Seminar 4

If it is written that a random variable ξ is "given" or "known", it is implied that its probability measure \mathbb{P}_{ξ} , CDF F_{ξ} , and PDF p_{ξ} (if the density exists) are known. If you are asked to find the distribution of ξ , it is sufficient to find any of the objects mentioned above.

Exercise 1

The distribution of a random vector is given:

$\beta \setminus \alpha$	-2	-1	0	1	2
$\overline{-2}$	1/32	1/32	1/24	1/32	1/32
$\overline{-1}$	1/32	1/32	1/24	1/32	1/32
0	1/24	1/24	1/6	1/24	1/24
1	1/32	1/32	1/24	1/32	1/32
2	1/32	1/32	1/24	1/32	1/32

- a. Find the probability $P(\alpha = \beta)$.
- b. Find the probability $P(\alpha > \beta)$.
- c. Find the probability $P(\alpha \leq \beta)$.
- d. Find the distributions of α and β .
- e. Is it true that α and β are independent?
- f. Find the distribution of $\alpha + \beta$.
- g. Find the distribution of $\alpha\beta$.
- h. Find the distribution of the random vector with components $\alpha + \beta$ and $\alpha \beta$.
- i. Find the distribution of the random vector with components $\alpha + \beta$ and $\alpha\beta$.

Solution

a. $\mathbb{P}(\alpha = \beta)$ is the sum of probabilities on the main diagonal:

$$\mathbb{P}(\alpha=\beta) = p_{-2,-2} + p_{-1,-1} + p_{0,0} + p_{1,1} + p_{2,2} = \frac{1}{32} + \frac{1}{32} + \frac{1}{6} + \frac{1}{32} + \frac{1}{32} = \frac{4}{32} + \frac{1}{6} = \frac{1}{8} + \frac{1}{6} = \frac{3+4}{24} = \frac{3+4}{24} = \frac{1}{32} + \frac{1}{32} = \frac{4}{32} + \frac{1}{6} = \frac{1}{8} + \frac{1}{6} = \frac{3+4}{24} =$$

- b. $\mathbb{P}(\alpha > \beta)$ is the sum of all elements above the main diagonal. The table is symmetric, therefore $\mathbb{P}(\alpha > \beta) = \mathbb{P}(\alpha < \beta) = (1 \mathbb{P}(\alpha = \beta))/2 = 17/48$.
- c. $\mathbb{P}(\alpha \leq \beta) = 1 \mathbb{P}(\alpha > \beta) = \frac{31}{48}$.
- d. To get the distribution of α , sum over columns: e.g. $\mathbb{P}(\alpha = -2) = 4 \cdot \frac{1}{32} + \frac{1}{24} = \frac{1}{6}$. Due to the symmetry of the table, the distribution of β (sum over rows) is the same.
- e. No, they are not independent, e.g. $\mathbb{P}(\alpha=-2,\beta=-2)=1/32\neq \mathbb{P}(\alpha=-2)\mathbb{P}(\beta=-2)=1/36$.

1

To find the distributions of the next points, you need to group the cells of the table (these are tedious but straightforward calculations):

- f. For $\alpha + \beta$: group the cells (i, j) with the same sum k = i + j.
- g. For $\alpha\beta$: group the cells with the same product $k=i\cdot j$.
- h. For $(\alpha + \beta, \alpha \beta)$, this is in bijection with (α, β) , so each entry corresponds to one entry in the table, i.e. $(\alpha, \beta) = ((\alpha + \beta) + (\alpha \beta), (\alpha + \beta) (\alpha \beta))/2$.
- i. For $(\alpha + \beta, \alpha\beta)$, compute the joint law separating the cases where α or β vanishes.

Exercise 2 [H]

The distributions of independent random variables ξ and η are given:

- a. Find the probability $P(\xi = \eta)$.
- b. Find the probability $P(\xi > \eta)$.
- c. Find the probability $P(\xi \leq \eta)$.
- d. Find the distributions of $\xi + \eta$ and $\xi \eta$.
- e. Find the distribution of $\xi \eta$.
- f. Find the distribution of the random vector with components $\xi + \eta$ and $\xi \eta$.
- g. Are $\xi + \eta$ and $\xi \eta$ dependent?
- h. Find the distribution of the random vector with components $\xi + \eta$ and $\xi \eta$.

Solution

a.
$$\mathbb{P}(\xi=\eta)=\sum_k\mathbb{P}(\xi=k,\eta=k)=\sum_k\mathbb{P}(\xi=k)\mathbb{P}(\eta=k)=\frac{3}{16}$$
 due to independence.

Similarly b, c, d, e, f, h. The calculations are performed by considering $\mathbb{P}(\xi=i,\eta=j)=\mathbb{P}(\xi=i)\mathbb{P}(\eta=j)$ and summing the probabilities over the corresponding regions.

g. Let's check the independence of $U=\xi+\eta$ and $V=\xi-\eta$. $\mathbb{P}(U=4,V=0)=\mathbb{P}(\xi=2,\eta=2)\neq \mathbb{P}(V=0)\mathbb{P}(U=4)$. The variables U and V are dependent.

Independence of Random Variables

Exercise 3 [H]

Let $\xi \sim \text{Uniform}([0,1])$ and $\eta \sim \text{Bernoulli}(1/3)$. Define these random variables on the same probability space so that they are

- a. independent
- b. dependent.

This means that for each part, you need to devise a probability space and a random vector $\zeta = (\alpha, \beta)$ on it, such that $\mathbb{P}_{\alpha} = \mathbb{P}_{\xi}$ and $\mathbb{P}_{\eta} = \mathbb{P}_{\beta}$.

Solution

- a. Independent: Take $\Omega = [0,1] \times [0,1]$ with the Lebesgue measure, as the probability space. Set $\alpha(t_1,t_2) = t_1$ and $\beta(t_1,t_2) = \mathbf{1}_{[0,1/3]}(t_2)$. We can also do the same taking $\Omega = [0,1] \times \{0,1\}$.
- b. **Dependent**: Take the space $\Omega = [0, 1]$ with the Lebesgue measure. Set $\alpha(t) = t$, $\beta(t) = \mathbf{1}_{[0, 1/3]}(t)$.

Exercise 4

Consider the probability space ([0, 1], $\mathcal{B}([0, 1])$, Leb). Are the following random variables dependent?

- a. $\xi(t) = 2t, \eta(t) = 1 t^2$
- b. $\xi(t) = \text{sign} [\sin(2\pi t)], \eta(t) = \text{sign} [\sin(4\pi t)]$
- c. $\xi(t) = \text{sign} [\sin(2\pi t)], \eta(t) = \text{sign}(t 1/3)$?

Solution

- a. Dependent. They are functionally related: $\eta(t) = 1 (\xi(t)/2)^2$. If we know the value of $\xi(t)$, we uniquely know the value of $\eta(t)$. For instance for $\varepsilon > 0$ small enough, $\mathbb{P}(\xi \leq \varepsilon, \eta \leq \varepsilon) = 0 \neq \mathbb{P}(\xi \leq \varepsilon) \mathbb{P}(\eta \leq \varepsilon)$
- b. Independent. $\mathbb{P}(\xi=1,\eta=1)=1/4=\mathbb{P}(\xi=1)\mathbb{P}(\eta=1)$, and this is enough since both η and ξ only take two values with positive probability.
- c. Dependent. E.g. $\mathbb{P}(\xi = +1 | \eta = -1) = 1 > \mathbb{P}(\xi = +1)$.

Exercise 5 [H]

Provide an example of two discrete random variables that are dependent but not functionally dependent, or explain why such an example does not exist.

Solution

Two random variables α , β are called functionally dependent if one is a measurable function of the other, for example $\beta = f(\alpha)$. This means that knowing the value of α , we uniquely know the value of β . This is typically much stronger than just dependency. E.g. in the previous example $\xi(t) = \text{sign} \left[\sin(2\pi t) \right], \eta(t) = \text{sign}(t-1/3)$ are dependent, but not functionally dependent.

Exercise 6 [H]

Is it true that if ξ and η are independent, then for any function $f: \mathbb{R} \to \mathbb{R}$, the random variables $f(\xi)$ and $f(\eta)$ are also independent?

Solution

We can even take f,g measurable. Then

$$\mathbb{P}(f(\xi) \in A, g(\eta) \in B) = \mathbb{P}(\xi \in f^{-1}(A), \eta \in g^{-1}(B)) = \mathbb{P}(\xi \in f^{-1}(A)) \mathbb{P}(\eta \in g^{-1}(B)) = \mathbb{P}(f(\xi) \in A) \mathbb{P}(g(\eta) \in B) = \mathbb{P}(g(\xi) \in A) = \mathbb{P}(g($$

Exercise 7 [H]

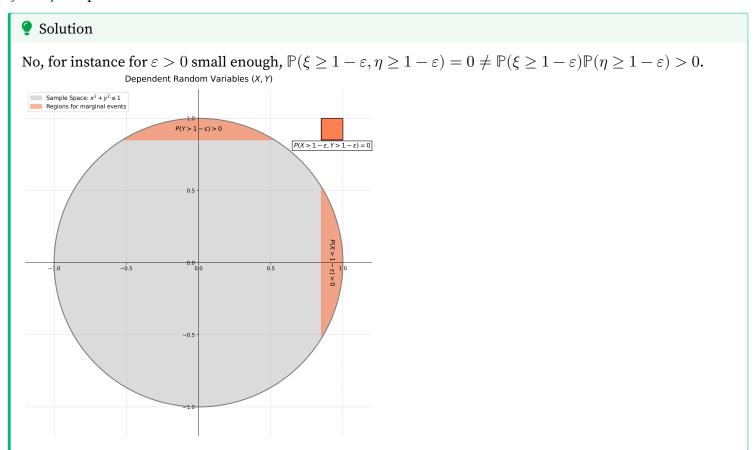
Is it true that if ξ and η are dependent, then ξ^2 and η^2 must also be dependent?

Solution

In general it is not true that the independence of $f(\xi)$ and $g(\eta)$ implies the independence of ξ and η . E.g. take $\xi=\eta=2\zeta-1$, where $\zeta\sim \mathrm{Bernoulli}(1/2)$. Then $\xi^2=\eta^2=1$ are independent.

Exercise 8 [H]

Let the random vector (ξ, η) have a uniform distribution in the disk $(x, y) : x^2 + y^2 \le 1$. Are the random variables ξ and η independent?

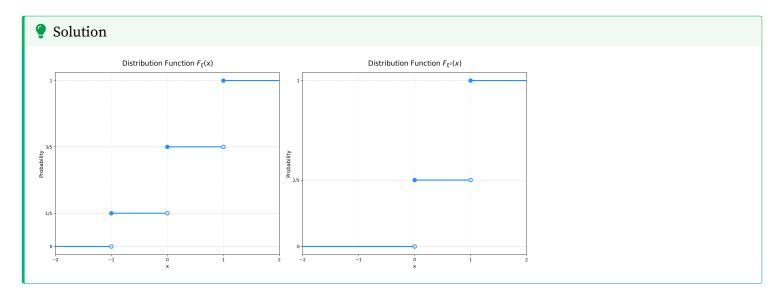


Distribution Function

Exercise 9

Consider a random variable ξ with the distribution below. Sketch F_ξ and $F_{\xi^2}.$

$$\begin{array}{c|c|c|c} \xi & -1 & 0 & 1 \\ \hline \mathbb{P}_{\xi} & 1/5 & 2/5 & 2/5 \end{array}$$



Exercise 10 [H]

Sketch the distribution function F_ξ for $\xi \sim \mathrm{Poisson}(\lambda), \, \lambda > 0.$

Solution

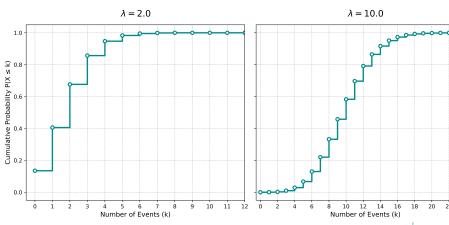
We have that:

•
$$F_{\xi}(x) = 0$$
 for $x < 0$.

•
$$F_{\varepsilon}(x) = e^{-\lambda}$$
 for $0 \le x < 1$.

$$\begin{split} \bullet \ & F_\xi(x) = 0 \text{ for } x < 0. \\ \bullet \ & F_\xi(x) = e^{-\lambda} \text{ for } 0 \leq x < 1. \\ \bullet \ & F_\xi(x) = e^{-\lambda} (1+\lambda) \text{ for } 1 \leq x < 2. \end{split}$$

Comparison of Poisson CDFs for Different



and so on. The function approaches 1 as $x \to \infty$.

Exercise 11

A rod of length 2 is broken at a random point. Explicitly define, specifying the probability space, the random variable ξ representing the length of the larger of the two resulting pieces. Find the CDFs F_{ξ}, F_{ξ^2} and the PDFs p_{ξ}, p_{ξ^2} .

Solution

Take $\Omega = [0, 2]$ with a uniform measure. The break point $U \sim \text{Uniform}([0, 2])$, the pieces have lengths U and 2-U. Thus we are interested in the random variable is $\xi = \max(U, 2-U)$, which takes values in [1,2]. Notice that $\xi \leq x \iff 2-x \leq U \leq x$. Thus for $x \in [1,2]$

$$F_{\xi}(x) = \int_{2-x}^{x} \frac{1}{2} du = x - 1$$

So ξ is uniform in [1, 2], its density being constant in this interval.

The distribution function of ξ^2 is then $F_{\xi^2}(x) = \sqrt{x} - 1$ for $x \in [1,4]$, its density being $(2x)^{-1/2}\mathbf{1}_{[1,4]}$.

Exercise 12

Given independent random variables ξ_1, \dots, ξ_n , find the distribution function of the random variable

- a. $\max(\xi_1, \dots, \xi_n)$. b. $\min(\xi_1, \dots, \xi_n)$.

Solution

Let $F_i(x) = \mathbb{P}(\xi_i \leq x)$ be the distribution function for ξ_i .

a. **Maximum:** Let $M_n=\max(\xi_1,\dots,\xi_n)$, then $\{M_n\leq x\}$ iff all the ξ_i are no greater than x. Thus by virtue of independence:

$$F_{M_n}(x) = \mathbb{P}(M_n \leq x) = \mathbb{P}(\xi_1 \leq x, \xi_2 \leq x, \dots, \xi_n \leq x) = \prod_{i=1}^n F_i(x)$$

If all ξ_i are identically distributed with CDF F(x), then $F_{M_n}(x) = (F(x))^n$.

b. **Minimum:** $m_n = \min(\xi_1, \dots, \xi_n)$. In this case we reason as above on the complementary event $m_n > x$ to get $F_{m_n}(x)=1-\prod_{i=1}^n(1-F_i(x))$. If all ξ_i are identically distributed with CDF F(x), then $F_{m_n}(x)=1$ $1 - (1 - F(x))^n$.

Exercise 13

Let the random variable ξ be continuous (i.e., its distribution function F_{ξ} is continuous). Find the distribution of the random variable $F_{\varepsilon}(\xi)$.

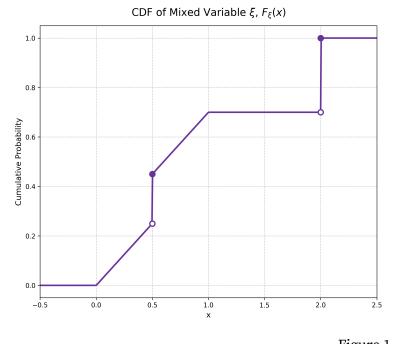
Solution

Let us denote $F = F_{\xi}$, to recall that this is not a random function. Let $\eta = F(\xi)$. Since F is a distribution function, its values lie in the interval [0,1]. Now $F^{-1}((-\infty,y])$ is an increasing (in y) closed subset of $\mathbb R$ of the

form $F^{-1}((-\infty,y])=(-\infty,s_y].$ Then, by the very definition of F

$$G(y) = \mathbb{P}(\eta \leq y) = \mathbb{P}(F(\xi) \leq y) = \mathbb{P}(\xi \in F^{-1}((-\infty,y])) = F(s_y)$$

If F is continuous, then $G(y)=F(s_y)=y$. Thus $F_{\xi}(\xi)$ is a uniform random variable. In general, if F is not continuous, $G(y) \leq y$.



CDF of Transformed Variable $Y = F_{\varepsilon}(\xi)$ 1.0 0.8 **Cumulative Probability** 0.2 Gap from 1st jump Actual CDF, G(y)Ideal Uniform CDF

Figure 1

Exercise 14 [H]

Let $\xi \sim \mathrm{Uniform}([-1,1])$. Find the distribution of the random variable $F_{|\xi|}(\xi)$.

Solution

 $|\xi|$ is uniform in [0,1], thus $F_{|\xi|}(\xi) = \max(\xi,0)$. Therefore

$$G(x) := \mathbb{P}(F_{|\xi|}(\xi) \leq x) = \begin{cases} 0 & \text{if } x < 0 \\ 1/2 + x/2 & \text{if } x \in [0,1] \\ 1 & \text{if } x > 1 \end{cases}$$

Exercise 15*

(Mixtures). On a probability space Ω , the following construction depending on a family of random variables ξ : $\mathbb{R} \to \mathbb{R}$ is considered: first, using a random variable $\eta \sim \text{Uniform}([0,1])$, an interval $[0,\eta(\omega)]$ is chosen. Then, independently, a random variable $\zeta(\omega) := \xi_{\eta(\omega)}(\omega)$ is chosen with a given distribution on the interval $[0,\eta(\omega)]$. Find the probability density of the resulting random variable ξ , if

a.
$$\xi_a \sim \text{Uniform}([0, a])$$
,
b. $\xi_a^2 \sim \text{Uniform}([0, a])$.

We can justify this formula either with measure theory, or using monotonicity in the law of ξ_a to have an explicit bound. In any case

$$\mathbb{P}(\zeta \leq x) = \int_0^1 \mathbb{P}(\xi_a \leq x) \, da$$

a. In this case the last formula gives for $x \in (0,1]$

$$\mathbb{P}(\zeta \leq x) = \int_0^1 \frac{x}{a} \mathbf{1}_{[0,a)}(x) + \mathbf{1}_{[a,\infty)}(x) \, da = x - x \log(x)$$

which has density $-\log(x)\mathbf{1}_{(0,1]}(x)$.

b. In this case, for $x\in(0,1)$, $\mathbb{P}(\xi_a\leq x)=\mathbb{P}(\xi_a^2\leq x^2)=x^2/a\mathbf{1}_{[0,\sqrt{a})}(x)+\mathbf{1}_{[\sqrt{a},\infty)}(x)$. Therefore for $x\in(0,1)$

$$\mathbb{P}(\zeta \leq x) = \int_0^1 \frac{x^2}{a} \mathbf{1}_{[0,\sqrt{a})}(x) + \mathbf{1}_{[\sqrt{a},\infty)}(x) da = x^2 - 2x^2 \log(x)$$

and the density is therefore $-4x \log(x) \mathbf{1}_{[0,1]}(x)$, a substantially different behavior around x=0.

Exercise 16*

Let $\xi \sim \text{Exp}(\lambda)$. Are its integer and fractional parts independent?

Solution

They are independent. Let $X:=\lfloor\xi\rfloor$ be the integer part, and $\eta:=\xi-\lfloor\xi\rfloor$ be the fractional part. For $k\in\{0,1,2,\dots\}$ and $y\in[0,1)$, we compute the joint distribution

$$\mathbb{P}(X=k,\eta \leq y) = \mathbb{P}(k \leq \xi \leq k+y) = e^{-\lambda k} - e^{-\lambda(k+y)} = e^{-\lambda k}(1-e^{-\lambda y})$$

As this is the product of a function k times a function of y, the random variables are independent. We see in particular that X is geometric with (non-success) parameter $e^{-\lambda}$, while η has density $\lambda e^{-\lambda y}(1-e^{-\lambda})^{-1}\mathbf{1}_{[0,1]}(y)$.

Additional Exercises

Exercise 17

Let $\xi \colon \Omega \to E$ be a random variable, and $f \colon E \to F$ be measurable. Here E, F are measurable space. Prove that the $(\xi, f(\xi))$ are independent iff $f(\xi)$ is constant a.s.

Solution

If $(\xi, f(\xi))$ are independent, then

$$\mathbb{P}(\xi \in A, f(\xi) \in B) = \mathbb{P}(\xi \in A, \xi \in f^{-1}(B)) = \mathbb{P}(\xi \in A)\mathbb{P}(\xi \in f^{-1}(B)) = \mathbb{P}(\xi \in A)\mathbb{P}(f(\xi) \in B)$$

If we now choose $A=f^{-1}(B)$ we get $\mathbb{P}(f(\xi)\in B)=\mathbb{P}(f(\xi)\in B)^2$. Namely $\mathbb{P}(f(\xi)\in B)\in\{0,1\}$ for all measurable B. This is the correct way of saying that $f(\xi)$ is constant. I.e., if the σ -algebra on \$F contains

singletons, this means that $f(\xi)$ is constant a.s.. Otherwise, *being constant* is not defined as a measurable event while saying that the law of $f(\xi)$ takes value in $\{0,1\}$ still makes sense.

^