Seminar 5

Exercise 1

Let $\alpha \sim \text{Uniform}([0,1])$. Find the following functions:

- a. The probability density function $p_{\beta}(x)$, if the random variable β is such that $\beta = 3\alpha 1$.
- b. The probability density function $p_{\gamma}(x)$, if the random variable γ is such that $\gamma = -\ln(\alpha)$.
- c. The probability density function $p_{\kappa}(x)$, if the random variable κ is such that

$$\kappa = \begin{cases} 1 + \alpha + \alpha^2 + \dots & \alpha \in (0, 1) \\ 0 & \alpha \notin (0, 1) \end{cases}$$

d. The probability density function $p_{\epsilon}(x)$, if

$$\epsilon = \begin{cases} \sum_{j=0}^{\infty} (-1)^j \alpha^j & \alpha \in (0,1) \\ 0 & \alpha \notin (0,1) \end{cases}$$

e. The cumulative distribution function $F_{\rho}(x)$, if the random variable ρ is such that

$$\rho = \begin{cases} 1 & \text{if } \alpha \text{ is irrational} \\ 0 & \text{if } \alpha \text{ is rational} \end{cases}$$

Solution

The density of α is $p_{\alpha}(t) = \mathbf{1}_{[0,1)}(t)$.

- a. $\beta=3\alpha-1$. This is a linear transformation. $\alpha=(\beta+1)/3$. The range for β is [-1,2]. $p_{\beta}(x)=p_{\alpha}\left(\frac{x+1}{3}\right)\left|\frac{d\alpha}{d\beta}\right|=1\cdot\frac{1}{3}=\frac{1}{3}$ on [-1,2]. This is $\mathrm{Uniform}([-1,2])$. In general, it is immediate to check that an affine transformation of a uniform random variable is uniform (on the interval being given by the same affine function).
- b. $\gamma=-\ln(\alpha)$, $\alpha=e^{-\gamma}$. The range for γ is $[0,\infty)$. $p_{\gamma}(x)=p_{\alpha}(e^{-x})\left|\frac{d\alpha}{d\gamma}\right|=1\cdot|-e^{-x}|=e^{-x}$ on $[0,\infty)$. I.e. $\gamma\sim\exp(1)$.
- c. $\kappa=\frac{1}{1-\alpha}$ for $\alpha\in(0,1)$. $\alpha=1-1/\kappa$. The range for κ is $(1,\infty)$. $p_{\kappa}(x)=p_{\alpha}(1-1/x)\left|\frac{d\alpha}{d\kappa}\right|=1\cdot|1/x^2|=1/x^2$ on $(1,\infty)$.
- d. $\epsilon=\frac{1}{1+\alpha}$ for $\alpha\in(0,1)$, $\alpha=1/\epsilon-1$. The range for ϵ is (1/2,1). $p_{\epsilon}(x)=p_{\alpha}(1/x-1)\left|\frac{d\alpha}{d\epsilon}\right|=1\cdot|-1/x^2|=1/x^2$ on (1/2,1).
- e. $\rho=1$ a.s., thus $F_{\rho}(x)=\mathbf{1}_{[1,\infty)}(x)$.

1

Exercise 2

The random variable α is uniform on the interval [-1,3], find the density of $-|\alpha|$.

Solution

If we visualize it graphically, $-|\alpha|$ pushes forward the density at points x>0 to the same at -x. The density of $-|\alpha|$ is this $\frac{1}{4}\mathbf{1}_{[-3,-1)}+\frac{1}{2}\mathbf{1}_{[-1,0)}$. We can also solve it analytically, indeed for y<0

$$f_{-|\alpha|}(y) = \frac{d}{dy} \mathbb{P}(-|\alpha| \leq y) = \frac{d}{dy} \mathbb{P}(\alpha \geq -y) + \frac{d}{dy} \mathbb{P}(\alpha \leq y) = \tfrac{1}{4} \mathbf{1}_{[-3,-1)}(y) + \tfrac{1}{2} \mathbf{1}_{[-1,0)}(y)$$

Exercise 3

The random variable α is uniform on the interval [-1,3], find the cumulative distribution function for $\frac{|\alpha|}{\alpha}$.

Solution

Since $\mathbb{P}(\alpha=0)=0$, we have that $\frac{|\alpha|}{\alpha}$ is just the sign of α . So it -1 with probability 1/4 and +1 with probability 3/4. The distribution function is $\frac{1}{4}\mathbf{1}_{[-1,1)} + \mathbf{1}_{[1,\infty)}$.

Exercise 4

A random variable α is uniform on the interval [-1,1], and a random variable β , independent of α , is a Bernoulli variable with parameter $p = \frac{1}{3}$.

- a. Find the cumulative distribution function of the random variable $\alpha\beta$.
- b. Find the cumulative distribution function of the random variable $|\alpha|\beta$.
- c. Find the cumulative distribution function of the random variable $|2\alpha 1|\beta$.

Solution

- $\begin{array}{l} \text{a. } F_{\alpha\beta}(x) = \frac{x+1}{6} \mathbf{1}_{[-1,0)}(x) + \frac{x+5}{6} \mathbf{1}_{[0,1)}(x) + \mathbf{1}_{[1,\infty)}(x). \\ \text{b. } F_{|\alpha|\beta}(x) = \frac{x+2}{3} \mathbf{1}_{[0,1)}(x) + \mathbf{1}_{[1,\infty)}. \end{array}$
- c. $F_{|2\alpha-1|\beta}(x) = \frac{4+x}{6} \mathbf{1}_{[0,1)}(x) + \frac{9+x}{12} \mathbf{1}_{[1,3)}(x) + \mathbf{1}_{[3,\infty)}(x)$.

Exercise 5

A random variable α is uniform on the interval [0,1], and the random variable β is independent of α .

- a. Find the probability density function of the random variable $2\alpha \beta$, if β is distributed according to the exponential law with parameter 1.
- b. Find the cumulative distribution function of the random variable $\alpha + \beta$, if β is discrete and distributed according to the Poisson law with parameter λ .
- c. Find the cumulative distribution function of the random variable $\alpha + 2\beta$, if β is a geometric random variable with parameter p.

Solution

a. Let $\xi = 2\alpha - \beta$. The density of 2α is $f_{2\alpha}(x) = \frac{1}{2}\mathbf{1}_{[0,2)}$. The density of $-\beta$ is $f_{-\beta}(x) = e^x\mathbf{1}_{(-\infty,0)}$. The density of the sum ξ is the convolution:

$$f_{\xi}(y) = \int_{-\infty}^{\infty} f_{2\alpha}(x) f_{-\beta}(y-x) dx = \frac{\mathbf{1}_{(-\infty,2)}(y)}{2} \int_{\max(0,y)}^{2} e^{y-x} dx = \begin{cases} \frac{e^{y}(1-e^{-2})}{2} & \text{if } y < 0. \\ \frac{1-e^{y-2}}{2} & \text{if } y \in [0,2). \\ 0 & \text{if } y > 2. \end{cases}$$

b. Let $\eta = \alpha + \beta$, then

$$F_{\eta}(x) = \sum_{k=0}^{\infty} \mathbb{P}(\eta \leq x | \beta = k) \mathbb{P}(\beta = k) = \sum_{k=0}^{\infty} \mathbb{P}(\alpha \leq x - k) \frac{e^{-\lambda} \lambda^k}{k!} = \sum_{k=0}^{\lfloor x \rfloor - 1} \frac{e^{-\lambda} \lambda^k}{k!} + (x - \lfloor x \rfloor) \frac{e^{-\lambda} \lambda^{\lfloor x \rfloor}}{\lfloor x \rfloor!}$$

c. Let $\zeta=\alpha+2\beta$. $\mathbb{P}(\beta=k)=(1-p)^kp$ for k=0,1,... Thus $F_{\zeta}(x)=\sum_{k=0}^{\infty}\mathbb{P}(\alpha\leq x-2k)(1-p)^kp$. So similarly to point b., F_{ζ} is piecewise affine, interpolating among the values of the $F_{2\beta}(x)$ at even integers points x=2k.

Exercise 6

A random variable γ is distributed according to the exponential law with parameter a, a random variable θ is also distributed according to the exponential law with parameter b, and γ , θ are independent.

- a. Find the probability density function of the r.v. $\sqrt{\gamma}$
- b. Find the probability density function of the r.v. γ^2
- c. Find the probability density function of the r.v. $1 e^{-a\gamma}$
- d. Find the probability density function of the r.v. $max(\gamma, \theta)$
- e. Find the probability density function of the r.v. $\min(\gamma, \theta)$
- f. Find the probability density function of the r.v. $\gamma + \theta$

Solution

- a. $\begin{array}{l} F(y)=\mathbb{P}(\gamma\leq y^2)=1-e^{-ay^2} \text{ for } y\geq 0. \ p(y)=2aye^{-ay^2}.\\ \text{b. } F(y)=\mathbb{P}(\gamma\leq \sqrt{y})=1-e^{-a\sqrt{y}} \text{ for } y\geq 0. \ p(y)=\frac{a}{2\sqrt{y}}e^{-a\sqrt{y}}. \end{array}$
- c. $\zeta = 1 e^{-a\gamma} = F_{\gamma}(\gamma)$. As we know, this transformation yields Uniform([0, 1]) for any continuous random variables γ .
- $\text{d. } F_{\max}(x) = F_{\gamma}(x)F_{\theta}(x) = 1 e^{-ax} e^{-bx} + e^{-(a+b)x}. \ p_{\max}(x) = ae^{-ax} + be^{-bx} (a+b)e^{-(a+b)x} \ \text{for } x = e^{-ax} + be^{-bx} (a+b)e^{-(a+b)x} \ \text{for } x = e^{-ax} + be^{-bx} (a+b)e^{-(a+b)x} \ \text{for } x = e^{-ax} + be^{-bx} (a+b)e^{-(a+b)x} \ \text{for } x = e^{-ax} + be^{-bx} (a+b)e^{-(a+b)x} \ \text{for } x = e^{-ax} + be^{-bx} (a+b)e^{-(a+b)x} \ \text{for } x = e^{-ax} + be^{-ax} e^{-ax$
- e. $F_{\min}(x) = 1 (1 F_{\gamma}(x))(1 F_{\theta}(x)) = 1 e^{-(a+b)x}$. Namely the minimum is exponential of parameter
- f. If $a \neq b$, $p_{\gamma + \theta}(y) = \frac{ab}{b-a}(e^{-ay} e^{-by})$. If a = b, $p_{\gamma + \theta}(y) = a^2ye^{-ay}$.

Exercise 7*

Let $X_1, X_2 \dots$ be independent random variables, with the same distribution $\exp(\lambda)$. Let $Y_n := \sum_{i=1}^n X_i$ and $N_t := \sum_{i=1}^n X_i$ $\inf\{n\geq 0\,:\, Y_{n+1}>t\}, t>0.$

- a. Prove that the distribution of Y_n has the density $\rho_n(y):=e^{-\lambda y} \frac{\lambda^n y^{n-1}}{(n-1)!} \mathbf{1}_{y\geq 0}$.
- b. Prove that $\mathbb{P}(N_t=k)=e^{-\lambda t}(\lambda t)^k/k!$ (this means that $N_t\sim \mathrm{Poisson}(\lambda t)$).

Solution

- a. Proceed by induction.
 - For n=1, $Y_1=X_1$, thus $\rho_1(y)=\lambda e^{-\lambda y}$.
 - Assume the formula is true for n. $Y_{n+1}=Y_n+X_{n+1}$, a sum of the independent random variables, and the density of Y_{n+1} is the convolution of their densities:

$$\begin{split} \rho_{n+1}(y) &= \int_0^y \rho_n(x) \rho_1(y-x) dx = \int_0^y \left(e^{-\lambda x} \frac{\lambda^n x^{n-1}}{(n-1)!} \right) (\lambda e^{-\lambda(y-x)}) dx \\ &= \frac{\lambda^{n+1} e^{-\lambda y}}{(n-1)!} \int_0^y x^{n-1} dx = e^{-\lambda y} \frac{\lambda^{n+1} y^n}{n!} \end{split}$$

b. Notice that $\rho_{n+1}' = -\lambda(\rho_{n+1} - \rho_n)$. Thus

$$\mathbb{P}(N_t = n) = \mathbb{P}(N_t < n+1) - \mathbb{P}(N_t < n) = \mathbb{P}(Y_{n+1} > t) - \mathbb{P}(Y_n > t) = \int_t^\infty \rho_{n+1}(y) - \rho_n(y) dy = -\int_t^\infty \rho_n(y) dy = -$$

which is the statement to be proved.

Exercise 8

A point (x, y) is chosen from the square $[0, 1] \times [0, 1]$ uniformly. Find the distribution of the random variables

- a. x^{2} .
- b. x/(x+y). c. $x^2 + y^2$.
- d. min(x, y).
- e. $\max(x,y)$.

🥊 Solution

- a. Set $\xi := x^2$. Then $F_{\xi}(z) = \mathbb{P}(x^2 \le z) = \sqrt{z}$ and $f_{\xi}(z) = 1/(2\sqrt{z})$.
- b. Set $\xi = x/(x+y)$. ξ has the same law as $1-\xi = y/(x+y)$. So the density satisfies, $f_{\xi}(z) = f_{\xi}(1-z)$. Thus take $z \leq 1/2$, and notice

$$\mathbb{P}(\xi \leq z) = \mathbb{P}(x \leq zy/(1-z)) = z/(2(1-z))$$

since this is the area of a triangle with height 1 and base z/(1-z). In particular the density is $f_{\xi}(z)=$ $2(1+|2z-1|)^{-2}$ for $z \in [0,1]$.

c. Set $\xi = x^2 + y^2$. For $z \in [0, 1]$

$$F_{\varepsilon}(z) = \mathbb{P}(x^2 + y^2 \leq z) = \text{Area of quarter circle of radius } \sqrt{z} = \pi z/4$$

For $z \in (1,2]$, the set $\{x^2 + y^2 \le z\}$ is the union of two triangles and a circular sector. The triangles have height 1 and base $\sqrt{z}\sin(\arccos z^{-1/2})$. The circular sector spans an angle $\pi/2-2\arccos(z^{-1/2})$.

So if
$$z \in (1, 2]$$

$$F_{\xi}(z)=\sqrt{z-1}+z(\pi/4-\arccos z^{-1/2})$$

In particular $f_{\xi}(z)=rac{\pi}{4}-\arccos(z^{-1/2})\mathbf{1}_{[1,2)}(z)$.

- d. Set $\xi = \min(x,y)$. $F_{\xi}(z) = 1 \mathbb{P}(\min(x,y) > z) = 1 (1-z)^2 = 2z z^2$ and $f_{\xi}(z) = 2(1-z)$.
- e. Set $\xi = \max(x, y)$. $F_{\xi}(z) = z^2$ and $f_{\xi}(z) = 2z$.

Exercise 9

Let the random vector (α, β) be uniformly distributed in the region $\mathcal{G} = \{|x| + |y| < 1\}$. That is, the corresponding two-dimensional probability density is

$$f_{(\alpha,\beta)}(x,y) = \begin{cases} \text{const} & x,y \in \mathcal{G} \\ 0 & x,y \notin \mathcal{G} \end{cases}$$
 (1)

- a. What is the value of the constant in the formula?
- b. Find the densities $f_{\alpha}(x)$, $f_{\beta}(y)$ of the distribution of the first coordinate α and the second coordinate β of the vector.
- c. Are α and β dependent?
- d. Find the probability densities for $\alpha + \beta$ and for $\alpha \beta$.

Solution

- a. The constant is $1/|\mathcal{G}| = 1/2$.
- b. The density of α is obtained as pushforwarding the uniform measure on $\mathcal G$ on the segment [-1,1]. So a graphical visualization immediately shows $f_{\alpha}(x)=f_{\beta}(x)=(1-|x|)\mathbf{1}_{[-1,1]}$. We can also find this by computing $f_{\alpha}(x)=\int f_{\alpha,\beta}(x,y)dy$.
- c. They are dependent, e.g. for $x \geq 1/2$, $\mathbb{P}(\alpha > x, \beta > x) = 0$, while $\mathbb{P}(\alpha > x) = \mathbb{P}(\beta > x) > 0$. More in general, we observe that if (α, β) are distributed as in Equation 1, they are independent iff $\mathcal{G} = \mathcal{G}_1 \times \mathcal{G}_2$ (up to a.e. equivalence) and α, β are uniform on $\mathcal{G}_1, \mathcal{G}_2$ respectively.
- d. Let $U=\alpha+\beta, V=\alpha-\beta$. This is a rotation and scaling. The region |x|+|y|<1 is transformed into the region $\mathcal{G}'=\{|u|<1,|v|<1\}$. The Jacobian of the transformation from (u,v) to (x,y) is 1/2 and thus (U,V) is uniform on \mathcal{G}' . In particular they are i.i.d. and uniformly distributed on [-1,1].

Exercise 10

Let the random vector (α, β) be uniformly distributed in the upper semicircle $\mathcal{G} = \{x^2 + y^2 < 1, y > 0\}$. That is, the corresponding two-dimensional probability density is

$$f_{(\alpha,\beta)}(x,y) = \begin{cases} \mathrm{const} & x,y \in \mathcal{G} \\ 0 & x,y \notin \mathcal{G} \end{cases}$$

- a. What is the value of the constant in the formula?
- b. Find the density $f_{\alpha}(x)$ of the first coordinate α of the vector.
- c. Find the probability density for $\rho = \sqrt{\alpha^2 + \beta^2}$. Draw the graph of $f_o(t)$.
- d. Find the probability density for $\phi = \arccos(\alpha/\sqrt{\alpha^2 + \beta^2})$. Draw the graph of $f_{\phi}(t)$.
- e. Are ρ and ϕ dependent?

_

- f. Find the probability density for $\xi = \alpha/\beta$. Draw the graph of $f_{\xi}(t)$.
- g. Find the probability density for $\eta = \alpha^2/\beta^2$. Draw the graph of $f_n(t)$.
- h. Find the probability density for $\theta = \alpha^2 + \beta^2$. Draw the graph of $f_{\theta}(t)$.

Solution

- a. The constant is $1/|\mathcal{G}| = 2/\pi$.
- b. The density of α is obtained as pushing forward the uniform measure on $\mathcal G$ on the segment [-1,1]. So a graphical visualization immediately shows $f_{\alpha}(x)=\frac{2}{\pi}\sqrt{1-x^2}\mathbf{1}_{[-1,1]}$. We can also find this by computing $f_{\alpha}(x)=\int f_{\alpha,\beta}(x,y)dy$.
- c. ρ is the polar radius. $F_{\rho}(r)=\mathbb{P}(\rho\leq r)=(\pi r^2/2)/(\pi/2)=r^2$ for $r\in[0,1]$. So $f_{\rho}(r)=2r\mathbf{1}_{[0,1)}$.
- d. ϕ is the polar angle. It is uniformly distributed on $[0, \pi]$.
- e. In polar coordinates, the joint density is $f(r,\phi)=(2/\pi)\cdot r$. Therefore ρ and ϕ are independent.
- f. $\xi = \alpha/\beta = \cot(\phi)$. $F_{\xi}(x) = \mathbb{P}(\cot\phi \le x) = \mathbb{P}(\phi \ge \operatorname{arccot}(x)) = \frac{\pi \operatorname{arccot}(x)}{\pi}$. $f_{\xi}(x) = \frac{1}{\pi(1+x^2)}$ (known as Cauchy distribution).
- g. $\eta = \xi^2$. $F_{\eta}(y) = \mathbb{P}(\xi^2 \leq y) = F_{\xi}(\sqrt{y}) F_{\xi}(-\sqrt{y}^-)$. $f_{\eta}(y) = \frac{1}{\pi\sqrt{y}(1+y)}\mathbf{1}_{[0,\infty)}(y)$.
- h. $\theta = \rho^2$. $F_{\theta}(t) = \mathbb{P}(\rho^2 \le t) = (\sqrt{t})^2 = t$ for $t \in [0, 1]$ (uniform distribution).

,