Bell’s Inequalities and the Limits of Applicability of Probability
Models

The most interesting examples of attempts to use the traditional Kolmogorov probability model in the microworld
are the interpretations of the Stern-Gerlach experiment on the deflection of a particle beam in a magnetic field and
Alain Aspect’s experiment on the interference of photon states (an experiment originally proposed back in the 1930s
in the Einstein-Podolsky-Rosen paper). In 1964, a relatively simple result in probability theory appeared, which
showed the incompatibility of traditional probability models with the quantitative measurements in these experi-
ments. This result is called Bell’s inequalities for random variables; a detailed explanation of the connection between
the inequalities and physical measurements can be found in Alexander Lvovsky’s 2019 textbook ‘Excellent Quantum
Mechanics’. Below is a proof (due to Accardi) of Bell’s inequalities for random variables.

Remark. The original proof by Bell and almost all later published proofs of Bell’s inequality use only random variables
that take only two values, 41 and —1.

Arithmetic Inequalities

Lemma 0.1. For any two numbers a, ¢ € [—1, 1], the following two inequalities (the variant for the signs + and —) hold:
latc]<1+ac 1)

Moreover, equality in expression Equation 1 holds if and only if eithera = +1 orc = +1.

Lemma 0.1. The two variants of inequalities Equation 1 follow from the fact that one is obtained from the other by
changing the sign of ¢, since c is chosen arbitrarily in [—1, 1]. Since for any a,c¢ € [—1, 1], we have 1 4+ ac > 0,
Equation 1 is equivalent to |a + ¢|*> = a? + ¢* 4 2ac < (1 £ ac)? = 1 + a®c? + 2ac, and this is equivalent to the
inequality a?(1 — ¢?) + ¢? < 1, which holds identically, since 1 — ¢? > 0, and, consequently,

a?(l1—c?)+c2<1—-c2+c2=1 (2)

Note that in expression Equation 2, equality holdsifand onlyifa = 41 or c = +1. Since the inequality in expression
Equation 1 remains unchanged when a and c are swapped, the statement follows. O]

Corollary 0.1. For any three numbers a, b, ¢ € [—1, 1], the following equivalent inequalities (for the sign variants + and
—) hold:
lab+ ¢cb| < 1+ ac (3)

and equality holds if and only if b = 41 and eithera = +1 orc = +1.
Corollary 0.1. Forb € [—1,1],
lab 4+ cb| = |b| - |a + ¢|] < |a £ ¢|

Thus, the statement follows from Lemma 0.1, and the first equality holds if and only if b = +1, so the second
statement also follows from Lemma 0.1. O



Lemma 0.2. For any numbers a, @, b, ?), ¢ € [—1,1], we have
lab — ¢b| + |ab + ¢b| < 2 4)
ab + ab + @b — ab < 2 (5)
Equality in the first formula holds if and only if b, 7), a,c = +1.

Lemma 0.2. From inequality Equation 3
lab—cb| < 1—ac (6)
\a5+077| <1+ ac (7)
Adding them up, we get expression Equation 4. The left-hand side of expression Equation 5 is less than or equal to
|ab — b + |ab + bal

and by replacing a with ¢, expression Equation 7 becomes the left-hand side of expression Equation 4. Conversely,

suppose that equality holds in expression Equation 4, and suppose that either |b| < 1 or |T)| < 1. Then we arrive at
a contradiction.

2=1b|-la—c|+ b -|a+c| <la—c|+|a+c| < (1—ac)+ (1+ac)=2

Thus, if equality holds in expression Equation 4, it must be that |b| = |T)] = 1. In this case, expression Equation 4
takes the form

la —c|+|a+c|=2
and, if either |a| < 1 or |¢| < 1, then it follows from Lemma 0.1 that |[a — ¢| + |a + ¢| < (1 —ac) + (1 + ac) = 2
so it must also be thata,c = +1. O

Corollary 0.2. Ifa,a,b, 7), ¢ € {—1,1}, then the inequalities in expression Equation 3 and expression Equation 4 are
equivalent, with equality holding in all of them. However, the inequality in expression Equation 5 can be strict.

Corollary 0.2. We know that the inequalities in expressions Equation 1 and Equation 2 are equivalent; also, Equa-
tion 4 follows from Equation 1. Choosing b = a in expression Equation 4, since a = 41, expression Equation 4
takes the form |ab — ¢b| < 1 — ac, which is equivalent to a(b + b) + a(b — b) < 2.

Under our assumptions, either (b -+ b) or (b — b) is zero, so the inequality a(b + b) + a(b — b) 2 (see Equation 5)

is equivalent to either a(b + b) < 2 or a(b — b) < 2, and in both cases, we can choose a, b, b or @, b, b such that the
product is negative and the inequality is strict. O

Bell’s Inequalities for Random Variables

Theorem 0.1 (Bell's Theorem). Let (£;,&,,&5,&,) be a random vector with components whose absolute values do not
exceed 1. Then the following three inequalities hold

E|l616: — &otsl] <1-El16)
E|l6162 + sl | <1+ El6s&y]
[l — &atal] + E[Jas + &atal] <2,




where the first and second inequalities are equivalent. If, however, £, or 5 are discrete with values +1, then all three in-
equalities are equivalent.

Theorem 0.1. On the probability space €2 of the random vector, we use the arithmetic inequalities obtained above
pointwise, together with |E ()| < E(|a|). O
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