Bell’s Inequalities and the Limits of
Applicability of Probability Models

The most interesting examples of attempts to use the traditional Kolmogorov prob-
ability model in the microworld are the interpretations of the Stern-Gerlach ex-
periment on the deflection of a particle beam in a magnetic field and Alain As-
pect’s experiment on the interference of photon states (an experiment originally
proposed back in the 1930s in the Einstein-Podolsky-Rosen paper). In 1964, a
relatively simple result in probability theory appeared, which showed the incom-
patibility of traditional probability models with the quantitative measurements in
these experiments. This result is called Bell’s inequalities for random variables;
a detailed explanation of the connection between the inequalities and physical
measurements can be found in Alexander Lvovsky’s 2019 textbook ‘Excellent
Quantum Mechanics’. Below is a proof (due to Accardi) of Bell’s inequalities
for random variables.

Remark. The original proof by Bell and almost all later published proofs of Bell’s
inequality use only random variables that take only two values, +1 and —1.

Arithmetic Inequalities

Lemma 0.1. For any two numbers a,c € [—1, 1], the following two inequalities
(the variant for the signs 4+ and —) hold:

la+c| <14ac (1)

Moreover, equality in expression Equation 1 holds if and only if either a = +1 or
c=+1.

Lemma 0.1. The two variants of inequalities Equation 1 follow from the fact that
one is obtained from the other by changing the sign of ¢, since c¢ is chosen arbi-
trarily in [—1, 1]. Since for any a,c € [—1, 1], we have 1 + ac > 0, Equation 1 is



equivalent to |a 4 ¢|? = a? + ¢ + 2ac < (1 4+ ac)? = 1 + ac? + 2ac, and this
is equivalent to the inequality a?(1 — ¢?) + ¢? < 1, which holds identically, since
1 —c? > 0, and, consequently,

a?(1—c?)+c2<1—-c?+c?2=1 (2)

Note that in expression Equation 2, equality holds if and only ifa = +1 or ¢ = +1.
Since the inequality in expression Equation 1 remains unchanged when a and ¢
are swapped, the statement follows. O

Corollary 0.1. For any three numbers a,b,c € [—1, 1], the following equivalent
inequalities (for the sign variants + and —) hold:

lab + ¢b| < 1+ ac (3)
and equality holds if and only if b = 41 and either a = +1 or ¢ = +1.

Corollary 0.1. For b € [—1,1],
lab 4 ¢cb| = |b] - |a £ ¢| < |a % ¢|

Thus, the statement follows from Lemma 0.1, and the first equality holds if and
only if b = +1, so the second statement also follows from Lemma 0.1. O

Lemma 0.2. For any numbers a, a, b,?), c € [-1,1], we have
lab — cb| + |ab + cb| < 2 (4)
ab + ab + @b — ab < 2 (5)
Equality in the first formula holds if and only if b,i), a,c = 41.
Lemma 0.2. From inequality Equation 3
lab—cb| < 1—ac (6)

ab + cb| < 1+ ac (7)

Adding them up, we get expression Equation 4. The left-hand side of expression
Equation 5 is less than or equal to

|ab — ba| + |ab + bl



and by replacing a with ¢, expression Equation 7 becomes the left-hand side of
expression Equation 4. Conversely, suppose that equality holds in expression

Equation 4, and suppose that either [b| < 1 or [b] < 1. Then we arrive at a
contradiction.
2=1bl-la—c|+[b]-la+c|<|a—c|+|a+c| < (1—ac)+ (1+ac)=2

Thus, if equality holds in expression Equation 4, it must be that [b| = [b| = 1. In
this case, expression Equation 4 takes the form

la —c|+|a+c| =2

and, if either |a| < 1 or |¢| < 1, then it follows from Lemma 0.1 that |a —¢| + \a—|—
c|] < (1 —ac)+ (1+ ac) = 2 so it must also be that a,c = +1.

Corollary 0.2. Ifa, a, b,z, c € {—1, 1}, then the inequalities in expression Equa-
tion 3 and expression Equation 4 are equivalent, with equality holding in all of
them. However, the inequality in expression Equation 5 can be strict.

Corollary 0.2. We know that the inequalities in expressions Equation 1 and Equa-

tion 2 are equivalent; also, Equation 4 follows from Equation 1. Choosing b = a
in expression Equation 4, since a = 41, expression Equation 4 takes the form

lab — ¢b| < 1 — ac, which is equivalent to a(b + b) + a(b — b) < 2.

Under our assumptions, either (b+b) or (7)—()) is zero, so the inequality a(b —1—7)) +
a(b—0b) < 2 (see Equation 5) is equivalent to either a(b+b) < 2ora(b—b) < 2

and in both cases, we can choose a, b, b or a, b, b such that the product is negative
and the inequality is strict. O

Bell’s Inequalities for Random Variables

Theorem 0.1 (Bell’s Theorem). Let (£;,&,,&5,&,) be a random vector with com-
ponents whose absolute values do not exceed 1. Then the following three inequal-
ities hold

E[l6162 — &6l| <1 El618]
£ _’5152 + 5253‘_ < 1+ E[6 &S]
Ell6g — &61] + E[l66 + &8l <2

where the first and second inequalities are equivalent. If, however, &, or {5 are
discrete with values +1, then all three inequalities are equivalent.



Theorem 0.1. On the probability space 2 of the random vector, we use the arith-
metic inequalities obtained above pointwise, together with |E(«)| < E(|al). O
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