Bernoulli Schemes with a finite
alphabet

! Bernoulli Schemes

We are concerned with sequences of very long words (z, z1, T, ...), where
each z; is taken from a finite alphabet A := {a,b,...}. We will consider
infinitely-long words, which is a standard approach if the words length is
much larger than the number of iterations of the shift map (defined below).
These structures are a basic building block for Statistical Mechanics, Dynam-
ical Systems and Finite Automata. Here we investigate the simplest example,
the case where we sample each letter independently.

This page contains interactive content, feel free to explore and modify it.
For more involved modifications, you are encouraged to run and edit the
interactive Jupyter Notebook instead. You can either:

* Run it on a computer with a Python/Jupyter-lab installation (requires
ipywidgets, numpy, matplotlib).

* Run it using an online service. The official Jupyter website provides
a free and open service. If you need more computing power, you can
import the notebook in Google Colab (requires a Google account).

Definitions

Let A be a finite or countable set and let M : A x A — {0,1}. A represents

the alphabet, and M encodes which pairs of letters can be consecutive (more
complex rules for the allowed sequences of letters fit within this framework just

by modifying the alphabet space).
The space 3 = ¥(A, M) of M-compatible words is the space of sequences

Se={zeA: M, , =1VieN}
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In other words, M tells us which letters can be consecutive, and X is the space of
infinitely long words that only contain consecutive pairs of allowed letters. X
is a measurable space, being a measurable subset of AN (equipped with the
product o-algebra). Elements of > are usually denoted by x, vy, z, and we write
x = (xy,xy ...) and so on.

Definition 0.1 (Shift map). The map

T: X =%
(Tw); = Lit1

is called the shift map.

Usually the pair (A, M) (and thus the ensuing space Y equipped with the shift
map 1) is called a symbolic dynamical system.

Notice that 7" is not invertible (unless .4 has just one element), since the first
letter of x disappears in 1'x, the second letter becomes the first, and so on.

Definition 0.2 (Invariant measure). A probability measure P on X is called in-
variant if

P(E) = P(T~\(E)) (1)

Let u € P(A) be a probability measure on A. If M, , = 1 forall a,b € A, then

the product measure P = ,u®N is invariant. This statement is obvious, it is just a
difficult way of saying that

P(X,€ Ay, ... X,, 1 €A, 1) =P(X;€4,,..,X, €4, 1)

if the X arei.i.d.. Indeed, by the definition of the product o-algebra, it is enough
to check Equation 1 for cylindrical sets £ = Ay x -+ A, _; X A X ... A.

Definition 0.3 (Bernoulli Scheme). A Bernoulli Scheme is a symbolic dynami-
cal system where A4 is finite or countable, M, , = 1 foralla,b € A, and P = pN

is a product probability measure on ¥ = AN, for some probability 1 on A. In
other words, it is just a sequence of i.i.d. random variables over a finite or count-
able space A, each with distribution p. If A is finite, then the scheme is called
finite.

Example 0.1. Consider a Bernoulli scheme over the alphabet A = {0, 1}. This
is identified by a parameter p € [0,1] given by p = u({1}). To avoid trivial



situations, we choose p € (0, 1). Up to a countable set (and thus a set of [P-
measure 0), ¥ = {0, 1}" is in bijection with the interval [0, 1] via the map

O(x) =) 27,

12>0

The point ®(z) will be in the interval [0, 1/2) if x, = 0, and in the interval [1/2, 1]
if xy = 1. Similarly ®(x) € [0,1/4) if xy = 0 and z; = 0, ®(x) € [1/4,1/2) if
Ty = 0 and z; = 1, and so on. This is not entirely exact, since dyadic numbers
admit two binary representations, e.g. (01111111 ...) = 1/2 = $(10000000 ...).
But this is just a countable set that we will neglect since it has measure 0 (it is pos-
sible to make ® bijective and measurable changing its definition on a countable
set but we do not need it here).

So we can look at this Bernoulli scheme on [0, 1] instead. What does the shift map
x — Tz correpond to? In other words, can we identify a map 7”: [0,1] — [0, 1]
such that 77(®(x)) = ®(Tx)? This is just a way of saying: I first change the
space to represent my points, from ¥ 5 z to [0, 1] 5 ®(z). Now z changes to T'z,
can I read this change autonomously on [0, 1], just a function of the image ®(z)?
Of course we can, since ® is invertible a.e.. So T’y = ®(T'®'y). We claim that
T’y = 2y(mod1); which it is easy to check. Indeed

i 20(x) ifx, =0
— i—1,. — 0
&(Tz) = ;2 Titl {2@(@ 1 ifx, =1
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Finite Schemes

Let us focus on finite Bernoulli schemes. So let 4 = {0,1,...,n — 1}, & = A"
and py, := pu({k}) so that . p, = 1. We assume p, > 0 (otherwise just neglect
the letters of the alphabet with 0 probability). As in Example 0.1 consider the
n-ary representation

¢: ¥ — [0,1]
O(x) = Zn_i_lxi
>0

Exercise 0.1. Prove that in this case, the n-ary representation pushes the shift
map on X to the map [0, 1] 3 y + ny(modl) on [0, 1].
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Trajectory Plot of (x;, xj+1) for x;+1 =2x;(mod 1)
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Figure 1: Graph of the pair (z;,z;,,), where x; = Tz, ;. The plot fills-in the
graph of the map 7.



We want to answer the following question. Fix u, that is fix pg,...,p,,_;. What

is the pushforward of the measure P = u®" to [0, 1]. In other words, if we take
(X,) ;>0 1.i.d. with distribution u (so P(X,; = k) = p;) what will be the distribution
of the random variable .

Y =) nlX,

>0

The sum on the r.h.s. is well-defined, so Y is well-defined and we want to inves-
tigate its distribution. Let us denote Q, = p®N o @1 the law of Y when the X
are i.i.d. with distribution u.

Proposition 0.1. If p,, = p = 1/n, namely if the X, are uniformly on the finite
set A, then Qu is the Lebesgue measure (but defined on the Borel o-algebra) on
[0,1].

Proposition 0.1. Indeed, we fix an interval of type I = [kn 7, (k41)n 7], for some
j>1and0 <k <n/—1. Wewill have that Y = &(X) € [ iff Y7 n i 1X, =

kn=J (up to a countable set of measure 0). In turn, this holds for a unique value
of (Xg, ..., X;_ ;). Therefore

J—1

Q.(I)=P(Yel)=P (Z n~lX, = ImJ) = p/ =n 7 =Leb(I)

=0

Since intervals of this type determine the measure entirely, we have Q . = Leb.
O

In other words, we can just obtain the Lebesgue measure by flipping a coin count-
ably many times, a rather intuitive construction for an object that was ill-defined
until the beginning of the 20th century. By the law of large numbers, Proposi-
tion 0.1 means that Lebesuge-almost all real numbers have the same frequency
of each digit. Say, if we fix n = 10, then define nk’g(a:) the number of times a
digit £k = 0,1,2,3,4,5,6,7,8,9 occurs in the representation of x in base 10, in
the first ¢ digits of x. Then

. e o Mee 1
Leb 0,1] : 1 —= =1 f—— = — =1
e <{:1: € [0,1] 1m£sup 7 im inf = 10})

Indeed, once we are back to the n = 10-ary representation, M,¢ is nothing but the

/—1 . . .. . .
sum Zz‘:o 1y _;, which is a sum of i.i.d. random variables with expected value

1/n. So the strong law of large numbers implies that the limit exists and equals
1/10 with probability 1.



Theorem 0.1. For a probability p € P(A), u({k}) := p,, over the finite alphabet
A =10,...,n — 1}, define

E, :=<5z€][0,1] : limsupwzliminfwzpk, Vk e A
® ¢ 14 0 14

Then the E,, are measurable, disjoint sets and Q ,(E,,) = 1 (and thus Q,(E,/) = 0
for i # p'). Thus

A.If pis uniform, p,, = 1/n, Qu is the Lebesgue measure. B. If there exists k € A
such that p;, = 1, then Qu is Dirac mass (it is concentrated on one point). C. If
P, < 1 for all k, but the measure is not uniform, Qu is of Cantor type, namely it
gives measure (0 to every point, but is singular w.r.t. the Lebesgue measure.

The proof is left as a guided exercise.

Exercise 0.2.

a. Notice that, by their very definition, the Eu are Borel-measurable and dis-
joint.

b. Reasoning as in the text after Proposition 0.1, prove in detail that Q M(E u) =
1.

c. Recall Proposition 0.1 and solve the trivial case where p,, = 1 for some £, to
prove the statements A) and B) in the theorem.

d. In the case C), it remains to prove that Q . gives measure 0 to each point.

Testing convergence

We can look at the trajectory of points of the map x — nx(modl).

We can check that if we start with NV points sampled with a given distribution u,
we can see numerically that in a few step they will spread out along the interval.
The idea is that, if we start with a distribution p absolutely continuous w.r.t. an
invariant measure, then after many iterations of the shift map 7', the distribution
of points will get close to the invariant measure (Lebesgue).

However, Lebesgue is not the only invariant measure, and as we iterate the map
many times, we see the problems. Numerical precision (the fact that we cannot
exactly sample a.c. w.r.t. Lebesgue) will have an impact when we iterate the map
many times, e.g. periodic orbits (that have 0 probability w.r.t. Lebesgue) have
positive probability when we sample on a computer. The effect is visible in this
video.
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Feel free to experiment how different distributions converge to Lebesgue. Can
you imagine how to mathematically state a convergence result?

Convergence to Invariant Measure for T(x) = 2x(mod 1)

Initial Distribution (Spike (Narrow Normal)) Distribution after 20 Iterations

8 R == Lebesgue Density (Uniform)
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Figure 2: If at time 0 we sample our points randomly, with a measure absolutely
continuous w.r.t. Lebesgue, their distribution will converge exponen-
tially fast to the Lebesgue measure. This also holds for the other invari-
ant measures.
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