
Bernoulli Schemes with a finite alphabet

Bernoulli Schemes

We are concerned with sequences of very long words (𝑥0, 𝑥1, 𝑥2, …), where each 𝑥𝑖 is taken from a finite alpha‐
bet 𝒜 ∶= {𝑎, 𝑏, …}. We will consider infinitely‐long words, which is a standard approach if the words length is
much larger than the number of iterations of the shift map (defined below). These structures are a basic build‐
ing block for Statistical Mechanics, Dynamical Systems and Finite Automata. Here we investigate the simplest
example, the case where we sample each letter independently.
This page contains interactive content, feel free to explore andmodify it. Formore involvedmodifications, you
are encouraged to run and edit the interactive Jupyter Notebook instead. You can either:

• Run it on a computer with a Python/Jupyter‐lab installation (requires ipywidgets, numpy, mat-
plotlib).

• Run it using an online service. The official Jupyter website provides a free and open service. If you need
more computing power, you can import the notebook in Google Colab (requires a Google account).

Definitions

Let 𝒜 be a finite or countable set and let 𝑀 ∶ 𝒜 × 𝒜 → {0, 1}. 𝒜 represents the alphabet, and 𝑀 encodes which
pairs of letters can be consecutive (more complex rules for the allowed sequences of letters fit within this framework
just by modifying the alphabet space).

The space Σ ≡ Σ(𝒜, 𝑀) of 𝑀 ‐compatible words is the space of sequences

Σ ∶= {𝑥 ∈ 𝒜ℕ ∶ 𝑀𝑥𝑖,𝑥𝑖+1
= 1, ∀𝑖 ∈ ℕ}

In other words, 𝑀 tells us which letters can be consecutive, and Σ is the space of infinitely long words that only
contain consecutive pairs of allowed letters. Σ is a measurable space, being a measurable subset of 𝒜ℕ (equipped
with the product 𝜎‐algebra). Elements of Σ are usually denoted by 𝑥, 𝑦, 𝑧, and we write 𝑥 = (𝑥0, 𝑥1 …) and so on.

Definition 0.1 (Shift map). The map
𝑇 ∶ Σ → Σ
(𝑇 𝑥)𝑖 = 𝑥𝑖+1

is called the shiftmap.

Usually the pair (𝒜, 𝑀) (and thus the ensuing space Σ equipped with the shift map 𝑇 ) is called a symbolic dynam‐
ical system.

Notice that𝑇 is not invertible (unless𝒜 has just one element), since the first letter of 𝑥 disappears in𝑇 𝑥, the second
letter becomes the first, and so on.
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Definition 0.2 (Invariant measure). A probability measure ℙ on Σ is called invariant if

ℙ(𝐸) = ℙ(𝑇 −1(𝐸)) (1)

Let 𝜇 ∈ 𝒫(𝒜) be a probability measure on 𝒜. If 𝑀𝑎,𝑏 = 1 for all 𝑎, 𝑏 ∈ 𝒜, then the product measure ℙ = 𝜇⊗ℕ is
invariant. This statement is obvious, it is just a difficult way of saying that

ℙ(𝑋0 ∈ 𝐴0, … , 𝑋𝑛−1 ∈ 𝐴𝑛−1) = ℙ(𝑋1 ∈ 𝐴0, … , 𝑋𝑛 ∈ 𝐴𝑛−1)

if the𝑋𝑖 are i.i.d.. Indeed, by the definition of the product 𝜎‐algebra, it is enough to check Equation 1 for cylindrical
sets 𝐸 = 𝐴0 × ⋯ 𝐴𝑛−1 × 𝒜 × … 𝒜.

Definition 0.3 (Bernoulli Scheme). A Bernoulli Scheme is a symbolic dynamical system where 𝒜 is finite or count‐
able, 𝑀𝑎,𝑏 = 1 for all 𝑎, 𝑏 ∈ 𝒜, and ℙ = 𝜇⊗ℕ is a product probability measure on Σ = 𝒜ℕ, for some probability 𝜇
on 𝒜. In other words, it is just a sequence of i.i.d. random variables over a finite or countable space 𝒜, each with
distribution 𝜇. If 𝒜 is finite, then the scheme is called finite.

Example0.1. Consider a Bernoulli schemeover the alphabet𝒜 = {0, 1}. This is identified by a parameter 𝑝 ∈ [0, 1]
given by 𝑝 = 𝜇({1}). To avoid trivial situations, we choose 𝑝 ∈ (0, 1). Up to a countable set (and thus a set of ℙ‐
measure 0), Σ = {0, 1}ℕ is in bijection with the interval [0, 1] via the map

Φ(𝑥) ∶= ∑
𝑖≥0

2−𝑖−1𝑥𝑖

The point Φ(𝑥) will be in the interval [0, 1/2) if 𝑥0 = 0, and in the interval [1/2, 1] if 𝑥0 = 1. Similarly Φ(𝑥) ∈
[0, 1/4) if 𝑥0 = 0 and 𝑥1 = 0, Φ(𝑥) ∈ [1/4, 1/2) if 𝑥0 = 0 and 𝑥1 = 1, and so on. This is not entirely exact, since
dyadic numbers admit two binary representations, e.g. Φ(01111111 …) = 1/2 = Φ(10000000 …). But this is just a
countable set that we will neglect since it has measure 0 (it is possible to make Φ bijective andmeasurable changing
its definition on a countable set but we do not need it here).

So we can look at this Bernoulli scheme on [0, 1] instead. What does the shift map 𝑥 ↦ 𝑇 𝑥 correpond to? In other
words, can we identify a map 𝑇 ′ ∶ [0, 1] → [0, 1] such that 𝑇 ′(Φ(𝑥)) = Φ(𝑇 𝑥)? This is just a way of saying: I
first change the space to represent my points, from Σ ∋ 𝑥 to [0, 1] ∋ Φ(𝑥). Now 𝑥 changes to 𝑇 𝑥, can I read this
change autonomously on [0, 1], just a function of the image Φ(𝑥)? Of course we can, since Φ is invertible a.e.. So
𝑇 ′𝑦 = Φ(𝑇 Φ−1𝑦). We claim that 𝑇 ′𝑦 = 2𝑦(mod1); which it is easy to check. Indeed

Φ(𝑇 𝑥) = ∑
𝑖≥0

2−𝑖−1𝑥𝑖+1 = {2Φ(𝑥) if 𝑥0 = 0
2Φ(𝑥) − 1 if 𝑥0 = 1
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Finite Schemes

Let us focus on finite Bernoulli schemes. So let𝒜 = {0, 1, … , 𝑛−1}, Σ = 𝒜ℕ and 𝑝𝑘 ∶= 𝜇({𝑘}) so that∑𝑖 𝑝𝑖 = 1.
We assume 𝑝𝑖 > 0 (otherwise just neglect the letters of the alphabet with 0 probability). As in Example 0.1 consider
the 𝑛‐ary representation

Φ∶ Σ → [0, 1]
Φ(𝑥) ∶= ∑

𝑖≥0
𝑛−𝑖−1𝑥𝑖
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Figure 1: Graph of the pair (𝑥𝑖, 𝑥𝑖+1), where 𝑥𝑖 = 𝑇 ′𝑥𝑖−1. The plot fills‐in the graph of the map 𝑇 .
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Exercise 0.1. Prove that in this case, the 𝑛‐ary representation pushes the shift map on Σ to the map [0, 1] ∋ 𝑦 ↦
𝑛𝑦(mod1) on [0, 1].

We want to answer the following question. Fix 𝜇, that is fix 𝑝0, … , 𝑝𝑛−1. What is the pushforward of the measure
ℙ = 𝜇⊗ℕ to [0, 1]. In other words, if we take (𝑋𝑖)𝑖≥0 i.i.d. with distribution 𝜇 (so ℙ(𝑋𝑖 = 𝑘) = 𝑝𝑘) what will be the
distribution of the random variable

𝑌 = ∑
𝑖≥0

𝑛−𝑖−1𝑋𝑖

The sum on the r.h.s. is well‐defined, so 𝑌 is well‐defined and we want to investigate its distribution. Let us denote
ℚ𝜇 = 𝜇⊗ℕ ∘ Φ−1 the law of 𝑌 when the 𝑋𝑖 are i.i.d. with distribution 𝜇.

Proposition 0.1. If 𝑝𝑘 ≡ 𝑝 = 1/𝑛, namely if the 𝑋𝑖 are uniformly on the finite set 𝒜, then ℚ𝜇 is the Lebesgue measure
(but defined on the Borel 𝜎‐algebra) on [0, 1].

Proposition 0.1. Indeed, we fix an interval of type 𝐼 = [𝑘𝑛−𝑗, (𝑘 + 1)𝑛−𝑗], for some 𝑗 ≥ 1 and 0 ≤ 𝑘 ≤ 𝑛𝑗 − 1. We
will have that 𝑌 = Φ(𝑋) ∈ 𝐼 iff ∑𝑗−1

𝑖=0 𝑛−𝑖−1𝑋𝑖 = 𝑘𝑛−𝑗 (up to a countable set of measure 0). In turn, this holds for
a unique value of (𝑋0, … , 𝑋𝑗−1). Therefore

ℚ𝜇(𝐼) = ℙ(𝑌 ∈ 𝐼) = ℙ (
𝑗−1
∑
𝑖=0

𝑛−𝑖−1𝑋𝑖 = 𝑘𝑛−𝑗) = 𝑝𝑗 = 𝑛−𝑗 = Leb(𝐼)

Since intervals of this type determine the measure entirely, we have ℚ𝜇 = Leb.

In other words, we can just obtain the Lebesguemeasure by flipping a coin countably many times, a rather intuitive
construction for an object that was ill‐defined until the beginning of the 20th century. By the law of large numbers,
Proposition 0.1 means that Lebesuge‐almost all real numbers have the same frequency of each digit. Say, if we fix
𝑛 = 10, then define 𝜂𝑘,ℓ(𝑥) the number of times a digit 𝑘 = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 occurs in the representation of
𝑥 in base 10, in the first ℓ digits of 𝑥. Then

Leb({𝑥 ∈ [0, 1] ∶ lim sup
ℓ

𝜂𝑘,ℓ
ℓ = lim inf

ℓ

𝜂𝑘,ℓ
ℓ = 1

10}) = 1

Indeed, once we are back to the 𝑛 = 10‐ary representation, 𝜂𝑘,ℓ is nothing but the sum ∑ℓ−1
𝑖=0 1𝑋𝑖=𝑘, which is a sum

of i.i.d. random variables with expected value 1/𝑛. So the strong law of large numbers implies that the limit exists
and equals 1/10 with probability 1.

Theorem 0.1. For a probability 𝜇 ∈ 𝒫(𝒜), 𝜇({𝑘}) ∶= 𝑝𝑘 over the finite alphabet 𝒜 = {0, … , 𝑛 − 1}, define

𝐸𝜇 ∶= {𝑥 ∈ [0, 1] ∶ lim sup
ℓ

𝜂𝑘,ℓ
ℓ = lim inf

ℓ

𝜂𝑘,ℓ
ℓ = 𝑝𝑘, ∀𝑘 ∈ 𝒜}

Then the 𝐸𝜇 are measurable, disjoint sets and ℚ𝜇(𝐸𝜇) = 1 (and thus ℚ𝜇(𝐸𝜇′) = 0 for 𝜇 ≠ 𝜇′). Thus

a. If 𝜇 is uniform, namely if 𝑝𝑘 = 1/𝑛, ℚ𝜇 is the Lebesgue measure.
b. If there exists 𝑘 ∈ 𝒜 such that 𝑝𝑘 = 1, then ℚ𝜇 is Dirac mass (it is concentrated on one point).
c. If 𝑝𝑘 < 1 for all 𝑘, but the measure is not uniform, ℚ𝜇 is of Cantor type, namely it gives measure 0 to every point, but

is singular w.r.t. the Lebesgue measure.

The proof is left as a guided exercise.
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Exercise 0.2.

a. Notice that, by their very definition, the 𝐸𝜇 are Borel‐measurable and disjoint.
b. Reasoning as in the text after Proposition 0.1, prove in detail that ℚ𝜇(𝐸𝜇) = 1.
c. Recall Proposition 0.1 and solve the trivial case where 𝑝𝑘 = 1 for some 𝑘, to prove the statements A) and B) in

the theorem.
d. In the case C), it remains to prove that ℚ𝜇 gives measure 0 to each point.

Testing convergence

We can look at the trajectory of points of the map 𝑥 ↦ 𝑛𝑥( (mod 1)).
We can check that if we start with𝑁 points sampled with a given distribution𝜇, we can see numerically that in a few
step they will spread out along the interval. The idea is that, if we start with a distribution 𝜇 absolutely continuous
w.r.t. an invariant measure, then after many iterations of the shift map 𝑇 , the distribution of points will get close to
the invariant measure (Lebesgue).

However, Lebesgue is not the only invariant measure, and as we iterate the map many times, we see the problems.
Numerical precision (the fact thatwe cannot exactly sample a.c. w.r.t. Lebesgue)will have an impactwhenwe iterate
the mapmany times, e.g. periodic orbits (that have 0 probability w.r.t. Lebesgue) have positive probability when we
sample on a computer. The effect is visible in this video.
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Feel free to experiment how different distributions converge to Lebesgue. Can you imagine how to mathematically
state a convergence result?

Figure 2: If at time 0 we sample our points randomly, with a measure absolutely continuous w.r.t. Lebesgue, their
distribution will converge exponentially fast to the Lebesgue measure. This also holds for the other invari‐
ant measures.
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