
Central Limit Theorem

Explore the Central Limit Theorem

This is a quick review of the Central Limit Theorem (CLT), trying to give a
concrete meaning to the nature of the convergence (in distribution, not in
probability).
This page contains (at its end) interactive content, feel free to explore and
modify it. For more involved modifications, you are encouraged to run and
edit the interactive Jupyter Notebook instead. You can either:

• Run it on a computer with a Python/Jupyter-lab installation (requires
ipywidgets, numpy, matplotlib).

• Run it using an online service. The official Jupyter website provides
a free and open service. If you need more computing power, you can
import the notebook in Google Colab (requires a Google account).

Convergence Results

Let us review some basic convergence results for sums of centered random vari-
ables with finite variance.

The classical statement

Theorem 0.1 (Central Limit Theorem). Let (𝑋𝑛)𝑛≥1 be an i.i.d. sequence of
real-valued random variables with 𝔼[|𝑋𝑛|2] < ∞. Denote 𝑚 ∶= 𝔼[𝑋𝑛], 𝜎 ∶=
√Var[𝑋𝑛] and

𝑆𝑛 ∶= 1√𝑛
𝑛

∑
𝑖=1

𝑋𝑖 − 𝑚
𝜎 (1)
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Then 𝑆𝑛 converges in distribution to a standard normal random variable, say
𝑍 ∼ 𝒩(0, 1). In other words, for each bounded measurable function 𝑓 ∶ ℝ → ℝ
which is continuous a.e., it holds

lim
𝑛→∞

𝔼[𝑓(𝑆𝑛)] = 1√
2𝜋 ∫ 𝑓(𝑥)𝑒−𝑥2/2𝑑𝑥

In particular one can deduce uniform convergence of the distribution function
from the previous theorem

lim
𝑛→∞

sup
𝑎<𝑏

|ℙ(𝑎 < 𝑆𝑛 ≤ 𝑏) − ℙ(𝑎 < 𝑍 ≤ 𝑏)| = 0

A quantitative version

The previous Theorem 0.1 does not address the rate of convergence.

Theorem 0.2 (Quantitative Central Limit Theorem). Let (𝑌𝑛)𝑛≥1 be a sequence
of independent random variables with 𝔼[𝑌𝑛] = 0 and 𝔼[𝑌 2

𝑛 ] = 1, 𝔼[|𝑌𝑛|3] < ∞.
Let

𝑆𝑛 ∶= 1√𝑛
𝑛

∑
𝑖=1

𝑌𝑖

For 𝑔 ∈ 𝐶3
𝑏 (ℝ) with 𝐶 ∶= sup𝑥 |𝑔‴(𝑥)|, the following inequality holds

|𝔼[𝑔(𝑆𝑛)] − 𝔼[𝑔(𝑍)]| ≤ 𝐶
6√𝑛 (23/2

√𝜋 + 1
𝑛

𝑛
∑
𝑘=1

𝔼[|𝑌𝑘|3])

where 𝑍 ∼ 𝒩(0, 1); namely

𝔼[𝑔(𝑍)] = 1√
2𝜋 ∫ 𝑔(𝑥)𝑒−𝑥2/2𝑑𝑥

Lemma 0.1. Let 𝑉 , 𝑌 , and 𝑍 be three random variables, such that

• 𝑉 and 𝑌 are independent; 𝑉 and 𝑍 are independent.
• 𝑌 and 𝑍 have a finite third moment.
• 𝔼[𝑌 ] = 𝔼[𝑍] and 𝔼[𝑌 2] = 𝔼[𝑍2].

Then for any 𝑔 ∈ 𝐶3
𝑏 , setting 𝐶 ∶= sup𝑥∈ℝ |𝑔‴(𝑥)|, the following inequality holds:

|𝔼[𝑔(𝑉 + 𝑌 )] − 𝔼[𝑔(𝑉 + 𝑍)]| ≤ 𝐶
6 (𝔼[|𝑌 |3] + 𝔼[|𝑍|3])
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Lemma 0.1. By Taylor expansion, for three points 𝑣, 𝑦, 𝑧 ∈ ℝ it holds

𝑔(𝑣 + 𝑦) − 𝑔(𝑣 + 𝑧) = 𝑔′(𝑣)(𝑦 − 𝑧) + 1
2𝑔″(𝑣)(𝑦2 − 𝑧2) + 𝑅(𝑣, 𝑦) − 𝑅(𝑣, 𝑧)

where the remainder terms 𝑅(𝑣, ⋅) are bounded as |𝑅(𝑣, 𝑥)| ≤ 𝐶|𝑥|3/6. Com-
puting the last formula at 𝑣 = 𝑉 (𝜔), 𝑦 = 𝑌 (𝜔) and 𝑧 = 𝑍(𝜔), then taking
expectation, one gathers

|𝔼[𝑔(𝑉 + 𝑌 ) − 𝑔(𝑉 + 𝑍)]| = |𝔼[𝑅(𝑉 , 𝑌 ) − 𝑅(𝑉 , 𝑍)]| ≤ 𝐶
6 (𝔼[|𝑌 |3] + 𝔼[|𝑍|3])

since (using the independence and equal expectation hypotheses) 𝔼[𝑔′(𝑉 )(𝑌 −
𝑍)] = 𝔼[𝑔′(𝑉 )]𝔼[(𝑌 − 𝑍)] = 0, and reasoning similarly 𝔼[𝑔″(𝑉 )(𝑌 2 − 𝑍2)] =
0.

Lemma 0.2. Let 𝑔 ∈ 𝐶3
𝑏 (ℝ), let 𝑌1, … , 𝑌𝑛 be independent random variables,

and 𝑍1, … , 𝑍𝑛 be another set of independent random variables. Assume 𝔼[𝑌𝑖] =
𝔼[𝑍𝑖], and 𝔼[𝑌 2

𝑖 ] = 𝔼[𝑍2
𝑖 ] < ∞. Let 𝐶 be as in Lemma 0.1. Then

∣𝔼 [𝑔 (𝑌1+…+𝑌𝑛√𝑛 ) − 𝑔 (𝑍1+…+𝑍𝑛√𝑛 )]∣ ≤ 𝐶
6𝑛3/2

𝑛
∑
𝑘=1

(𝔼[|𝑌𝑘|3] + 𝔼[|𝑍𝑘|3])

In particular if the 𝑌𝑖 are i.i.d. and the 𝑍𝑖 are i.i.d. (in general with a different
distribution)

∣𝔼 [𝑔 (𝑌1+…+𝑌𝑛√𝑛 ) − 𝑔 (𝑍1+…+𝑍𝑛√𝑛 )]∣ ≤ 𝐶 (𝔼[|𝑌1|3] + 𝔼[|𝑍1|3])
6√𝑛

Lemma 0.2. With no loss of generality, one can assume that all the 𝑌1, … , 𝑌𝑛, 𝑍1, … , 𝑍𝑛
are independent random variables. Then write 𝑉𝑘 = (𝑌1 + … + 𝑌𝑘−1 + 𝑍𝑘+1 +
… + 𝑍𝑛)/√𝑛 to get

∣𝔼 [𝑔 (𝑌1+…+𝑌𝑛√𝑛 ) − 𝑔 (𝑍1+…+𝑍𝑛√𝑛 )]∣ = ∣
𝑛

∑
𝑘=1

𝔼 [𝑔 (𝑉𝑘 + 𝑌𝑘√𝑛) − 𝑔 (𝑉𝑘 + 𝑍𝑘√𝑛)]∣

≤
𝑛

∑
𝑘=1

𝐶
6 (𝔼[|𝑌𝑘/√𝑛|3] + 𝔼[|𝑍𝑘/√𝑛|3])

where in the last inequality we used Lemma 0.1 𝑛 times.

Theorem 0.2. If the 𝑍𝑖 are i.i.d. standard normal, then (𝑍1 +…+𝑍𝑛)/√𝑛 is also
a standard normal and thus its distribution does not depend on 𝑛. Theorem 0.2 is
therefore a consequence of Lemma 0.2 and the identity 𝔼[|𝑍𝑖|3] = 23/2/√𝜋.
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Exercise 0.1. Let 𝑍 ∼ 𝒩(0, 1) be a standard normal random variable. Let
(𝑌𝑛)𝑛≥1 be an i.i.d. sequence with 𝔼[𝑌 𝑘

𝑖 ] = 𝔼[𝑍𝑘] for 𝑘 = 1, … , ℓ. Let 𝑔 ∈ 𝐶ℓ
𝑏(ℝ).

Prove that there exists a constant 𝐶 (depending on 𝑔 and the distribution of the
𝑌𝑖) such that

|𝔼[𝑔(𝑆𝑛)] − 𝔼[𝑔(𝑍)]| ≤ 𝐶𝑛−(ℓ−1)/2

A martingale version

It is worth mentioning that the Central Limit Theorem extends far beyond the
scope of independent random variables.Ultimately, this type of result does not
even need the variables to be defined on a linear space (e.g. making small random
steps on a manifold will, as the steps decrease, converge to a distribution over
continuous curves on the manifold, called Brownian Motion). So there are strong
local versions of the CLT, metric-space versions, ergodic versions, and so on. An
interesting example that only requires elementary hypotheses covers the case of
martingales.

Theorem 0.3 (Martingale Central Limit Theorem). Let (𝑋𝑛)𝑛≥1 be a sequence
of real-valued random variables and let

𝑀𝑛 ∶= 𝑋1 + … + 𝑋𝑛

Assume that

• 𝔼[𝑋𝑛|𝑀𝑛−1] = 0.
• For 𝑄𝑛 ∶= 𝔼[𝑋2

𝑛|𝑀𝑛−1], it holds ∑∞
𝑛=1 𝑄𝑛 = ∞ a.s..

• 𝔼 [sup𝑛 𝔼[|𝑋𝑛|3|𝑀𝑛−1]] < ∞.

Let 𝜏ℓ ∶= inf{𝑁 ∈ ℕ ∶ ∑𝑁
𝑛=1 𝑄𝑛 ≥ ℓ}. Then 𝑀𝜏ℓ

/
√

ℓ converges to a standard
normal in distribution as ℓ → ∞.

Non-Convergence Results

So far so good. If the 𝑌𝑛 are centered i.i.d. random variables with finite variance
𝑆𝑛 converges to a normal limit. In distribution. Will this convergence hold in
probability or even a.s.?

Proposition 0.1. Regardless of the probability space and the distribution of the
𝑌𝑛, the Central Limit Theorem does not hold in probability, not even along sub-
sequences.
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The point is that if two sequences (𝑆𝑛), (𝑆′
𝑛) converge in probability, then 𝑆𝑛+𝑆′

𝑛
converges in probability (by triangular inequality). The same statement does
not hold in distribution, since convergence in distribution does not concern the
random variables, but only their distribution. Thus the convergence of 𝑆𝑛 or 𝑆′

𝑛
says nothing about their joint distribution.

Proposition 0.1. Any limit point (along some subsequence) in probability 𝑆 of 𝑆𝑛,
will have a standard normal distribution. In particular

√
2𝑆2𝑛 − 𝑆𝑛 would con-

verge to (
√

2−1)𝑆 ∼ 𝒩(0, 3−2
√

2) in probability (along the same subsequence).
But

𝑆′
𝑛 ∶=

√
2𝑆2𝑛 − 𝑆𝑛 = 1√𝑛

2𝑛
∑

𝑖=𝑛+1
𝑌𝑖

is a sum of 𝑛 i.i.d. divided by
√𝑛, thus the Theorem 0.1 applies to 𝑆′

𝑛. Namely
for any limit point 𝑆, (

√
2 − 1)𝑆 should also have 𝒩(0, 1) law. Therefore there

are no limit points.

Visualizing the Convergence

What does it mean that the sequence converges in distribution? Let’s fix 𝜇, a
centered probability measure on ℝ, and some value 𝑛 ‘large enough’ (as we have
seen, how large depends on𝜇, for instance in its thirdmoment) and let us consider
i.i.d. 𝑋1, … , 𝑋𝑛 with law 𝜇 and the ensuing 𝑆𝑛 as in Equation 1. We can sample
many times, say 𝑁 , (𝑋1, … , 𝑋𝑛) and thus 𝑆𝑛 independently. The Central Limit
Theorem tells us that, with large probability, the fraction of samples for which 𝑆𝑛
falls in a given interval [𝑎, 𝑏] is roughly equal to the gaussian integral over [𝑎, 𝑏].
Here roughly means with a probability converging to 1 as 𝑁 and 𝑛 grow.

Here we take 𝑁 samples, plot how many of them fall in each interval, and com-
pare the result against the theoretical Gaussian density.

On the other hand, the fact that 𝑆𝑛 is not converging a.s., means that if we fix a
sample (an 𝜔 so to speak) and we follow the value of 𝑆𝑛 as depending on 𝑛, it will
not converge to any value.

Each individual sample does not converge as a function of 𝑛: we extract the 𝑋𝑖
i.i.d., and plot 𝑆𝑛 as a function of 𝑛. Even for 𝑛 large, the plot oscillates and
convergence does not set in.
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Figure 1: As 𝑛 is large, the probability of finding a sample in a given interval con-
verges to the Gaussian integral over that interval. This is the content
of the Central Limit Theorem. Here we take 𝑁 samples, plot how many
of them fall in each interval, and compare the result against the theo-
retical Gaussian density.
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Figure 2: Each individual sample does not converge as a function of 𝑛. We ex-
tract the 𝑋𝑖 i.i.d., and plot 𝑆𝑛 as a function of 𝑛. Even for 𝑛 large, the
plot oscillates and convergence does not set in. Here we plot 𝑁 = 5
different samples up to 𝑛 = 106.
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