Central Limit Theorem

1 Explore the Central Limit Theorem

This is a quick review of the Central Limit Theorem (CLT), trying to give a concrete meaning to the nature of
the convergence (in distribution, not in probability).

This page contains (at its end) interactive content, feel free to explore and modify it. For more involved modi-
fications, you are encouraged to run and edit the interactive Jupyter Notebook instead. You can either:

* Run it on a computer with a Python/Jupyter-lab installation (requires ipywidgets, numpy, mat-
plotlib).

* Run it using an online service. The official Jupyter website provides a free and open service. If you need
more computing power, you can import the notebook in Google Colab (requires a Google account).

Convergence Results

Let us review some basic convergence results for sums of centered random variables with finite variance.

The classical statement

Theorem 0.1 (Central Limit Theorem). Let (X,,),~; be an ii.d. sequence of real-valued random variables with
E[| X, |?] < co. Denotem := E[X,,], o := +/Var[X,,] and
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Then S,, converges in distribution to a standard normal random variable, say Z ~ N (0,1). In other words, for each
bounded measurable function f: R — R which is continuous a.e., it holds
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In particular one can deduce uniform convergence of the distribution function from the previous theorem

lim sup|P(a < S, <b)—Pla< Z<b)|=0
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A quantitative version

The previous Theorem 0.1 does not address the rate of convergence.

Theorem 0.2 (Quantitative Central Limit Theorem). Let (Y),),,~, be a sequence of independent random variables with
E[Y,] = 0and E[Y,?] = 1, E[]Y,,|?] < oc. Let
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For g € C}(R) with C := sup_ |g” (x)|, the following inequality holds
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where Z ~ N (0, 1); namely
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Lemma0.1. LetV, Y, and Z be three random variables, such that

« VandY areindependent; V and Z are independent.
« Y and Z have a finite third moment.
« E[Y] = E[Z] and E[Y?] = E[Z?].

Then for any g € C, setting C' := sup__, |g” ()|, the following inequality holds:

[Elg(V + )]~ Elg(V + 2))| < & (€[] + E[|2[*)

Lemma 0.1. By Taylor expansion, for three points v, y, 2 € R it holds
9w +y) —gv+2) =g )y —2) + 59" (V)Y — 2%) + R(v,y) — R(v, 2)

where the remainder terms R (v, -) are bounded as |R(v, z)| < C|x|?/6. Computing the last formula at v = V (w),
y =Y (w) and z = Z(w), then taking expectation, one gathers

C
Elg(V +Y) —g(V + 2)]| = [E[R(V.Y) = R(V, 2)]| < & (E[Y]'] + E[|Z]])
since (using the independence and equal expectation hypotheses) E[¢'(V)(Y — Z)] = El¢'(V)]E[(Y — Z)] = 0,
and reasoning similarly E[g” (V) (Y2 — Z?)] = 0. O

Lemma0.2. Letg € C3(R), letYy, ..., Y, beindependent random variables, and Z , ..., Z,, be another set of independent
random variables. Assume E[Y;] = E[Z,], and E[Y;?] = E[Z?] < o0o. Let C be as in Lemma 0.1. Then
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In particular if the Y, arei.i.d. and the Z, are i.i.d. (in general with a different distribution)
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Lemma 0.2. With no loss of generality, one can assume thatall the Y7, ..., Y, , Z;, ..., Z,, are independent random
variables. Thenwrite V, = (Y, + ... +Y,  + Z,., + ...+ Z,,)/v/n to get
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(E[[Y,/vnl’] + E[l1Z,./v/nl?])
where in the last inequality we used Lemma 0.1 n times. O

Theorem 0.2. If the Z, are i.i.d. standard normal, then (Z; + ... + Z,,)/+/n is also a standard normal and thus its
distribution does not depend on n. Theorem 0.2 is therefore a consequence of Lemma 0.2 and the identity E[| Z,|?] =

23/2 ) /7. O

Exercise 0.1. Let Z ~ N(0, 1) be a standard normal random variable. Let (Y},),~; be an i.i.d. sequence with
E[VF] = E[Z*] for k = 1,...,L. Letg € C{(R). Prove that there exists a constant C' (depending on g and the
distribution of the Y}) such that

IE[g(S,,)] — E[g(2)]| < Cn—1/2

n

A martingale version

It is worth mentioning that the Central Limit Theorem extends far beyond the scope of independent random vari-
ables.Ultimately, this type of result does not even need the variables to be defined on a linear space (e.g. making
small random steps on a manifold will, as the steps decrease, converge to a distribution over continuous curves
on the manifold, called Brownian Motion). So there are strong local versions of the CLT, metric-space versions,
ergodic versions, and so on. An interesting example that only requires elementary hypotheses covers the case of
martingales.

Theorem 0.3 (Martingale Central Limit Theorem). Let (X,,),,~ be a sequence of real-valued random variables and let
M, =X +..+X,
Assume that

* [E[Xn|Mn71] = 0
- For Q,, := E[X2|M,,_,],itholds> " Q, = oo a.s.
° [E [supn [E[|Xn|3|Mn—1” < o0.

Let T, :=inf{N € N : Z,]j: L Qp > L}, Then M, /\/€ converges to a standard normal in distribution as { — co.

Non-Convergence Results

So far so good. If the Y, are centered i.i.d. random variables with finite variance .S,, converges to a normal limit. In
distribution. Will this convergence hold in probability or even a.s.?

Proposition 0.1. Regardless of the probability space and the distribution of the Y, , the Central Limit Theorem does not
hold in probability, not even along subsequences.



The point is that if two sequences (.5,,), (S;,) converge in probability, then S, + .S, converges in probability (by
triangular inequality). The same statement does not hold in distribution, since convergence in distribution does not
concern the random variables, but only their distribution. Thus the convergence of S, or S/, says nothing about
their joint distribution.

Proposition 0.1. Any limit point (along some subsequence) in probability S of S,,, will have a standard normal distri-
bution. In particular v/25,, — S, would converge to (v/2 — 1)S ~ N (0,3 — 21/2) in probability (along the same
subsequence). But
ER>
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is a sum of n i.i.d. divided by \/n, thus the Theorem 0.1 applies to S/,. Namely for any limit point S, (v/2 — 1)S
should also have NV (0, 1) law. Therefore there are no limit points. O

Visualizing the Convergence

What does it mean that the sequence converges in distribution? Let’s fix u, a centered probability measure on R,
and some value n ‘large enough’ (as we have seen, how large depends on i, for instance in its third moment) and
let us consider i.i.d. X,..., X, with law ;2 and the ensuing S, as in Equation 1. We can sample many times, say
N, (Xy,...,X,,) and thus S,, independently. The Central Limit Theorem tells us that, with large probability, the
fraction of samples for which S, falls in a given interval [a, b] is roughly equal to the gaussian integral over [a, b].
Here roughly means with a probability converging to 1 as /N and n grow.

Here we take N samples, plot how many of them fall in each interval, and compare the result against the theoretical
Gaussian density.

On the other hand, the fact that S,, is not converging a.s., means that if we fix a sample (an w so to speak) and we
follow the value of S,, as depending on n, it will not converge to any value.

Each individual sample does not converge as a function of n: we extract the X, i.i.d., and plot .S,, as a function of n.
Even for n large, the plot oscillates and convergence does not set in.



Distribution of S, for X;~ {-1, +1} (Bernoulli)
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Figure 1: As n is large, the probability of finding a sample in a given interval converges to the Gaussian integral over
that interval. This is the content of the Central Limit Theorem. Here we take N samples, plot how many
of them fall in each interval, and compare the result against the theoretical Gaussian density.



5 Sample Paths of S, using {-1, +1} (Bernoulli) steps
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Figure 2: Each individual sample does not converge as a function of n. We extract the X, i.i.d., and plot S, as a

function of n. Even for n large, the plot oscillates and convergence does not set in. Here we plot N = 5
different samples up to n = 106.
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