
Central Limit Theorem

Explore the Central Limit Theorem

This is a quick review of the Central Limit Theorem (CLT), trying to give a concrete meaning to the nature of
the convergence (in distribution, not in probability).
This page contains (at its end) interactive content, feel free to explore and modify it. For more involved modi‐
fications, you are encouraged to run and edit the interactive Jupyter Notebook instead. You can either:

• Run it on a computer with a Python/Jupyter‐lab installation (requires ipywidgets, numpy, mat-
plotlib).

• Run it using an online service. The official Jupyter website provides a free and open service. If you need
more computing power, you can import the notebook in Google Colab (requires a Google account).

Convergence Results

Let us review some basic convergence results for sums of centered random variables with finite variance.

The classical statement

Theorem 0.1 (Central Limit Theorem). Let (𝑋𝑛)𝑛≥1 be an i.i.d. sequence of real‐valued random variables with
𝔼[|𝑋𝑛|2] < ∞. Denote 𝑚 ∶= 𝔼[𝑋𝑛], 𝜎 ∶= √Var[𝑋𝑛] and

𝑆𝑛 ∶= 1√𝑛
𝑛

∑
𝑖=1

𝑋𝑖 − 𝑚
𝜎 (1)

Then 𝑆𝑛 converges in distribution to a standard normal random variable, say 𝑍 ∼ 𝒩(0, 1). In other words, for each
bounded measurable function 𝑓 ∶ ℝ → ℝ which is continuous a.e., it holds

lim
𝑛→∞

𝔼[𝑓(𝑆𝑛)] = 1√
2𝜋 ∫ 𝑓(𝑥)𝑒−𝑥2/2𝑑𝑥

In particular one can deduce uniform convergence of the distribution function from the previous theorem

lim
𝑛→∞

sup
𝑎<𝑏

|ℙ(𝑎 < 𝑆𝑛 ≤ 𝑏) − ℙ(𝑎 < 𝑍 ≤ 𝑏)| = 0
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A quantitative version

The previous Theorem 0.1 does not address the rate of convergence.

Theorem 0.2 (Quantitative Central Limit Theorem). Let (𝑌𝑛)𝑛≥1 be a sequence of independent random variables with
𝔼[𝑌𝑛] = 0 and 𝔼[𝑌 2

𝑛 ] = 1, 𝔼[|𝑌𝑛|3] < ∞. Let

𝑆𝑛 ∶= 1√𝑛
𝑛

∑
𝑖=1

𝑌𝑖

For 𝑔 ∈ 𝐶3
𝑏 (ℝ) with 𝐶 ∶= sup𝑥 |𝑔‴(𝑥)|, the following inequality holds

|𝔼[𝑔(𝑆𝑛)] − 𝔼[𝑔(𝑍)]| ≤ 𝐶
6√𝑛 (23/2

√𝜋 + 1
𝑛

𝑛
∑
𝑘=1

𝔼[|𝑌𝑘|3])

where 𝑍 ∼ 𝒩(0, 1); namely

𝔼[𝑔(𝑍)] = 1√
2𝜋 ∫ 𝑔(𝑥)𝑒−𝑥2/2𝑑𝑥

Lemma 0.1. Let 𝑉 , 𝑌 , and 𝑍 be three random variables, such that

• 𝑉 and 𝑌 are independent; 𝑉 and 𝑍 are independent.
• 𝑌 and 𝑍 have a finite third moment.
• 𝔼[𝑌 ] = 𝔼[𝑍] and 𝔼[𝑌 2] = 𝔼[𝑍2].

Then for any 𝑔 ∈ 𝐶3
𝑏 , setting 𝐶 ∶= sup𝑥∈ℝ |𝑔‴(𝑥)|, the following inequality holds:

|𝔼[𝑔(𝑉 + 𝑌 )] − 𝔼[𝑔(𝑉 + 𝑍)]| ≤ 𝐶
6 (𝔼[|𝑌 |3] + 𝔼[|𝑍|3])

Lemma 0.1. By Taylor expansion, for three points 𝑣, 𝑦, 𝑧 ∈ ℝ it holds

𝑔(𝑣 + 𝑦) − 𝑔(𝑣 + 𝑧) = 𝑔′(𝑣)(𝑦 − 𝑧) + 1
2𝑔″(𝑣)(𝑦2 − 𝑧2) + 𝑅(𝑣, 𝑦) − 𝑅(𝑣, 𝑧)

where the remainder terms 𝑅(𝑣, ⋅) are bounded as |𝑅(𝑣, 𝑥)| ≤ 𝐶|𝑥|3/6. Computing the last formula at 𝑣 = 𝑉 (𝜔),
𝑦 = 𝑌 (𝜔) and 𝑧 = 𝑍(𝜔), then taking expectation, one gathers

|𝔼[𝑔(𝑉 + 𝑌 ) − 𝑔(𝑉 + 𝑍)]| = |𝔼[𝑅(𝑉 , 𝑌 ) − 𝑅(𝑉 , 𝑍)]| ≤ 𝐶
6 (𝔼[|𝑌 |3] + 𝔼[|𝑍|3])

since (using the independence and equal expectation hypotheses) 𝔼[𝑔′(𝑉 )(𝑌 − 𝑍)] = 𝔼[𝑔′(𝑉 )]𝔼[(𝑌 − 𝑍)] = 0,
and reasoning similarly 𝔼[𝑔″(𝑉 )(𝑌 2 − 𝑍2)] = 0.

Lemma0.2. Let 𝑔 ∈ 𝐶3
𝑏 (ℝ), let 𝑌1, … , 𝑌𝑛 be independent random variables, and 𝑍1, … , 𝑍𝑛 be another set of independent

random variables. Assume 𝔼[𝑌𝑖] = 𝔼[𝑍𝑖], and 𝔼[𝑌 2
𝑖 ] = 𝔼[𝑍2

𝑖 ] < ∞. Let 𝐶 be as in Lemma 0.1. Then

∣𝔼 [𝑔 (𝑌1+…+𝑌𝑛√𝑛 ) − 𝑔 (𝑍1+…+𝑍𝑛√𝑛 )]∣ ≤ 𝐶
6𝑛3/2

𝑛
∑
𝑘=1

(𝔼[|𝑌𝑘|3] + 𝔼[|𝑍𝑘|3])

In particular if the 𝑌𝑖 are i.i.d. and the 𝑍𝑖 are i.i.d. (in general with a different distribution)

∣𝔼 [𝑔 (𝑌1+…+𝑌𝑛√𝑛 ) − 𝑔 (𝑍1+…+𝑍𝑛√𝑛 )]∣ ≤ 𝐶 (𝔼[|𝑌1|3] + 𝔼[|𝑍1|3])
6√𝑛
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Lemma 0.2. With no loss of generality, one can assume that all the 𝑌1, … , 𝑌𝑛, 𝑍1, … , 𝑍𝑛 are independent random
variables. Then write 𝑉𝑘 = (𝑌1 + … + 𝑌𝑘−1 + 𝑍𝑘+1 + … + 𝑍𝑛)/√𝑛 to get

∣𝔼 [𝑔 (𝑌1+…+𝑌𝑛√𝑛 ) − 𝑔 (𝑍1+…+𝑍𝑛√𝑛 )]∣ = ∣
𝑛

∑
𝑘=1

𝔼 [𝑔 (𝑉𝑘 + 𝑌𝑘√𝑛) − 𝑔 (𝑉𝑘 + 𝑍𝑘√𝑛)]∣

≤
𝑛

∑
𝑘=1

𝐶
6 (𝔼[|𝑌𝑘/√𝑛|3] + 𝔼[|𝑍𝑘/√𝑛|3])

where in the last inequality we used Lemma 0.1 𝑛 times.

Theorem 0.2. If the 𝑍𝑖 are i.i.d. standard normal, then (𝑍1 + … + 𝑍𝑛)/√𝑛 is also a standard normal and thus its
distribution does not depend on𝑛. Theorem0.2 is therefore a consequence of Lemma0.2 and the identity𝔼[|𝑍𝑖|3] =
23/2/√𝜋.

Exercise 0.1. Let 𝑍 ∼ 𝒩(0, 1) be a standard normal random variable. Let (𝑌𝑛)𝑛≥1 be an i.i.d. sequence with
𝔼[𝑌 𝑘

𝑖 ] = 𝔼[𝑍𝑘] for 𝑘 = 1, … , ℓ. Let 𝑔 ∈ 𝐶ℓ
𝑏(ℝ). Prove that there exists a constant 𝐶 (depending on 𝑔 and the

distribution of the 𝑌𝑖) such that
|𝔼[𝑔(𝑆𝑛)] − 𝔼[𝑔(𝑍)]| ≤ 𝐶𝑛−(ℓ−1)/2

Amartingale version

It is worth mentioning that the Central Limit Theorem extends far beyond the scope of independent random vari‐
ables.Ultimately, this type of result does not even need the variables to be defined on a linear space (e.g. making
small random steps on a manifold will, as the steps decrease, converge to a distribution over continuous curves
on the manifold, called Brownian Motion). So there are strong local versions of the CLT, metric‐space versions,
ergodic versions, and so on. An interesting example that only requires elementary hypotheses covers the case of
martingales.

Theorem 0.3 (Martingale Central Limit Theorem). Let (𝑋𝑛)𝑛≥1 be a sequence of real‐valued random variables and let

𝑀𝑛 ∶= 𝑋1 + … + 𝑋𝑛

Assume that

• 𝔼[𝑋𝑛|𝑀𝑛−1] = 0.
• For 𝑄𝑛 ∶= 𝔼[𝑋2

𝑛|𝑀𝑛−1], it holds ∑∞
𝑛=1 𝑄𝑛 = ∞ a.s..

• 𝔼 [sup𝑛 𝔼[|𝑋𝑛|3|𝑀𝑛−1]] < ∞.

Let 𝜏ℓ ∶= inf{𝑁 ∈ ℕ ∶ ∑𝑁
𝑛=1 𝑄𝑛 ≥ ℓ}. Then 𝑀𝜏ℓ

/
√

ℓ converges to a standard normal in distribution as ℓ → ∞.

Non‑Convergence Results

So far so good. If the 𝑌𝑛 are centered i.i.d. random variables with finite variance 𝑆𝑛 converges to a normal limit. In
distribution. Will this convergence hold in probability or even a.s.?

Proposition 0.1. Regardless of the probability space and the distribution of the 𝑌𝑛, the Central Limit Theorem does not
hold in probability, not even along subsequences.
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The point is that if two sequences (𝑆𝑛), (𝑆′
𝑛) converge in probability, then 𝑆𝑛 + 𝑆′

𝑛 converges in probability (by
triangular inequality). The same statement does not hold in distribution, since convergence in distribution does not
concern the random variables, but only their distribution. Thus the convergence of 𝑆𝑛 or 𝑆′

𝑛 says nothing about
their joint distribution.

Proposition 0.1. Any limit point (along some subsequence) in probability 𝑆 of 𝑆𝑛, will have a standard normal distri‐
bution. In particular

√
2𝑆2𝑛 − 𝑆𝑛 would converge to (

√
2 − 1)𝑆 ∼ 𝒩(0, 3 − 2

√
2) in probability (along the same

subsequence). But

𝑆′
𝑛 ∶=

√
2𝑆2𝑛 − 𝑆𝑛 = 1√𝑛

2𝑛
∑

𝑖=𝑛+1
𝑌𝑖

is a sum of 𝑛 i.i.d. divided by
√𝑛, thus the Theorem 0.1 applies to 𝑆′

𝑛. Namely for any limit point 𝑆, (
√

2 − 1)𝑆
should also have 𝒩(0, 1) law. Therefore there are no limit points.

Visualizing the Convergence

What does it mean that the sequence converges in distribution? Let’s fix 𝜇, a centered probability measure on ℝ,
and some value 𝑛 ‘large enough’ (as we have seen, how large depends on 𝜇, for instance in its third moment) and
let us consider i.i.d. 𝑋1, … , 𝑋𝑛 with law 𝜇 and the ensuing 𝑆𝑛 as in Equation 1. We can sample many times, say
𝑁 , (𝑋1, … , 𝑋𝑛) and thus 𝑆𝑛 independently. The Central Limit Theorem tells us that, with large probability, the
fraction of samples for which 𝑆𝑛 falls in a given interval [𝑎, 𝑏] is roughly equal to the gaussian integral over [𝑎, 𝑏].
Here roughly means with a probability converging to 1 as 𝑁 and 𝑛 grow.

Here we take𝑁 samples, plot howmany of them fall in each interval, and compare the result against the theoretical
Gaussian density.

On the other hand, the fact that 𝑆𝑛 is not converging a.s., means that if we fix a sample (an 𝜔 so to speak) and we
follow the value of 𝑆𝑛 as depending on 𝑛, it will not converge to any value.

Each individual sample does not converge as a function of 𝑛: we extract the 𝑋𝑖 i.i.d., and plot 𝑆𝑛 as a function of 𝑛.
Even for 𝑛 large, the plot oscillates and convergence does not set in.
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Figure 1: As 𝑛 is large, the probability of finding a sample in a given interval converges to the Gaussian integral over
that interval. This is the content of the Central Limit Theorem. Here we take 𝑁 samples, plot how many
of them fall in each interval, and compare the result against the theoretical Gaussian density.
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Figure 2: Each individual sample does not converge as a function of 𝑛. We extract the 𝑋𝑖 i.i.d., and plot 𝑆𝑛 as a
function of 𝑛. Even for 𝑛 large, the plot oscillates and convergence does not set in. Here we plot 𝑁 = 5
different samples up to 𝑛 = 106.
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