
Statistical properties of 1-d Random
walks

Random walking on ℤ
This note explores some features of a 1-dimensional random walk. We con-
sider a random walker who, each second, may take a step up with probability
𝑝 or a step down with probability 1−𝑝. For 𝑝 = 1/2, the walker will get back
to the origin with probability 1. One may then study the statistical properties
of the random walk while the walker is away from 0. Some statements are
proved with different methods in different sections.
This page contains interactive content, feel free to explore and modify it.
For more involved modifications, you are encouraged to run and edit the
interactive Jupyter Notebook instead. You can either:

• Run it on a computer with a Python/Jupyter-lab installation (requires
ipywidgets, numpy, matplotlib).

• Run it using an online service. The official Jupyter website provides
a free and open service. If you need more computing power, you can
import the notebook in Google Colab (requires a Google account).

Definitions

We begin with a formal definition of the random walk.

Definition 0.1 (1-d Random Walk). Let (𝑋𝑖)𝑖≥1 be a sequence of i.i.d. random
variables with

ℙ(𝑋𝑖 = +1) = 𝑝 and ℙ(𝑋𝑖 = −1) = 1 − 𝑝
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for some 𝑝 ∈ [0, 1]. The 1-dimensional random walk starting at the origin is
the sequence of random variables (𝑆𝑛)𝑛≥0 defined by 𝑆0 ∶= 0 and

𝑆𝑛 ∶=
𝑛

∑
𝑖=1

𝑋𝑖 for 𝑛 ≥ 1 (1)

The walk is called symmetric if 𝑝 = 1/2 and asymmetric otherwise. We say the
walker returns to the origin at time 𝑛 if 𝑆𝑛 = 0. The first return time to the
origin is the random variable

𝜏0 ∶= inf{𝑛 ≥ 1 ∶ 𝑆𝑛 = 0} (2)

where we set inf ∅ = ∞.

We first determine for which values of 𝑝 the walker is certain to return to the
origin, namely ℙ(𝜏0 < ∞) = 1. Such a walk is called recurrent. If ℙ(𝜏0 < ∞) <
1, the walk is called transient.

Will the walker get back to the origin?

The behavior of the walk is dramatically different in the symmetric versus the
asymmetric case.

The asymmetric case: escaping to infinity

If the walk is biased (𝑝 ≠ 1/2), there is a net drift in one direction. The Strong
Law of Large Numbers (SLLN) is sufficient to show that the walker almost surely
moves away from the origin forever.

Proposition 0.1. If 𝑝 ≠ 1/2, the 1-d random walk is transient. In fact, |𝑆𝑛| → ∞
almost surely, which implies that the walker visits the origin only a finite number
of times.

Proposition 0.1. The mean of a single step is 𝑚 ∶= 𝔼[𝑋𝑖] = 2𝑝 − 1. This 𝑚 ≠ 0
iff 𝑝 ≠ 1/2. By the Strong Law of Large Numbers, we have almost surely

lim
𝑛→∞

𝑆𝑛
𝑛 = 𝑚

This implies that, if 𝑚 ≠ 0, |𝑆𝑛| → ∞ almost surely. It thus can only take the
value 0 finitely many times. Therefore, the walk is transient.
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Remark. We have just checked that the number of times the walker gets back to
0 is finite, with probability 1 if 𝑝 ≠ 1/2. A proper way to do it is to think that
for each 𝑝 ∈ [0, 1] we have a probability measure ℙ𝑝 on the space of trajectories
X ∶ ℕ → ℤ. Then define a random variable

𝒩0 ≡ 𝒩0(X) ∶= |{𝑛 ∈ ℕ ∶ 𝑆𝑛 = 0}| ∈ ℕ ∪ {+∞}
This is the number of times the walker visits the origin. Proposition 0.1 can also
be written

ℙ(𝒩0 < ∞) = 1 𝑝 ≠ 1/2

Exercise 0.1. Let 𝑝 ≠ 1/2. Prove that the random variable𝒩0 follows a geomet-
ric distribution ℙ(𝒩0 = 𝑘) = (1 − 𝜃)𝑘−1𝜃 for 𝑘 ≥ 1 and some 𝜃 = ℙ(𝜏0 = ∞) ∈
(0, 1).

Exercise 0.2. The geometric distribution of 𝒩0 in Exercise 0.1 depends on the
parameter 𝜃, which in turn depends on 𝑝, let’s denote it 𝜃𝑝. (Recall 𝑝 ≠ 1/2).
• Prove that 𝜃𝑝 = 𝜃1−𝑝.
• Prove that, for 𝑝 > 1/2, 𝑝 ↦ 𝜃𝑝 is strictly increasing. (Hint: draw two ran-
dom walks, corresponding to 𝑝 > 𝑞 > 1/2. If the first step is −1, they both
will get back to 0. If the first step is +1, can you realize them simultane-
ously so that the one with parameter 𝑝 is never smaller than the one with
parameter 𝑞?).

The symmetric case: a certain return

When the walk is symmetric, there is no drift. One might guess the walker could
still drift away by chance. However, it turns out that a return to the origin is
almost sure. A powerful way to see this is to analyze the expected number of
returns.

For 𝜏 (0)
0 ∶= 0, define for 𝑛 ≥ 1

𝜏 (𝑛)
0 ≡ 𝜏 (𝑛)

0 (X) ∶= inf{𝑚 > 𝜏 (𝑛−1)
0 ∶ 𝑆𝑚 = 0}

so that 𝜏0 ≡ 𝜏 (1)
0 , see Equation 2. 𝜏 (𝑛)

0 is the 𝑛-th time the walk touches the origin.
We have the simple fact

ℙ(𝜏 (𝑛)
0 < ∞) = ℙ(𝜏0 < ∞)𝑛
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since indeed each time we visit 0, the process restarts anew. So the probability
that we come back 𝑛 times, is exactly the probability that we come back once, to
the power 𝑛. This gives us a powerful tool to prove that ℙ(𝜏0 < ∞) = 1. Indeed

∞
∑
𝑚=0

ℙ(𝑆𝑚 = 0) = 𝔼 [
∞

∑
𝑚=0

1𝑆𝑚=0] = 𝔼 [
∞

∑
𝑛=0

1𝜏(𝑛)
0 <∞]

=
∞

∑
𝑛=0

ℙ(𝜏0 < ∞)𝑛 = 1
1 − ℙ(𝜏0 < ∞)

That is (both sides may be +∞)

𝔼[𝒩0] =
∞

∑
𝑚=0

ℙ(𝑆𝑚 = 0) = 1
1 − ℙ(𝜏0 < ∞) (3)

Proposition 0.2. If 𝑝 = 1/2, the 1-d symmetric random walk is recurrent, i.e.,
ℙ(𝜏0 < ∞) = 1.

It is worth recalling the Stirling’s bounds for the factorial

𝑛𝑛𝑒−𝑛√
2𝜋𝑛𝑒1/(12𝑛+1) ≤ 𝑛! ≤ 𝑛𝑛𝑒−𝑛√

2𝜋𝑛𝑒1/(12𝑛) 𝑛 ≥ 1 (4)

Proposition 0.2. For the walker to be at the origin at time 𝑛, it must have taken an
equal number of steps up and down. This is only possible if 𝑛 is even. Let 𝑛 = 2𝑘
for some 𝑘 ≥ 1. The number of paths of length 2𝑘 is 22𝑘. The number of paths
with exactly 𝑘 steps up and 𝑘 steps down is given by the binomial coefficient (2𝑘

𝑘 ).
Thus, the probability of being at the origin at time 2𝑘 is

ℙ(𝑆2𝑘 = 0) = (2𝑘
𝑘 ) (1

2)
2𝑘

If we use Stirling’s approximation (Equation 4) for the factorials in the last for-
mula, we get for 𝑘 ≥ 1

ℙ(𝑆2𝑘 = 0) = 1√
𝜋𝑘

(1 − 𝜀𝑘), 1
8𝑘 + 3 ≤ 𝜀𝑘 ≤ 1

8𝑘 (5)

Since the series ∑𝑘 ℙ(𝑆2𝑘 = 0) diverges, we get the statement thanks to Equa-
tion 3.
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Another proof of Proposition 0.2. Let 𝑝𝑥 be the probability that a walker starting
at point 𝑥 will eventually hit 0. We want to show that 𝑝𝑥 = 1 for all 𝑥 ∈ ℤ. Clearyl
𝑝0 = 1. For 𝑥 ≠ 0, by conditioning on the first step, we have:

𝑝𝑥 = 1
2𝑝𝑥−1 + 1

2𝑝𝑥+1, 𝑥 ∈ ℤ ∖ {0}

This equation implies that the points (𝑥 − 1, 𝑝𝑥−1), (𝑥, 𝑝𝑥), and (𝑥 + 1, 𝑝𝑥+1) are
collinear. The only line that passes through (0, 1) and remains bounded with
0 ≤ 𝑝𝑥 ≤ 1 for all 𝑥 is the constant line 𝑝𝑥 = 1. Thus, the walk is recurrent.

Exercise 0.3. Use the same approach to prove that for 𝑝 ≠ 1/2, 1−𝜃𝑝 = ℙ(𝜏0 <
∞) < 1. Express 𝜃𝑝 using a series.

Remark 0.1. The recurrence is not a trivial consequence of the symmetry. If we
were to perform a symmetric walk on ℤ3 (indeed on any finitely generated group
which is not virtually isomorphic to ℤ or ℤ2), the walk would be transient despite
the symmetry. Informally speaking, recurrence is a consequence of the symmetry
and the fact that ℤ is a small graph.

Excursions

The statistical properties of the so called excursions turn out to be quite interest-
ing. We give a brief overview of the law of the return time here.

Definition 0.2 (Excursion). A path segment (𝑆𝑚, 𝑆𝑚+1, … , 𝑆𝑚+𝑛) is an an ex-
cursion from 0 of length 𝑛 if 𝑆𝑚 = 0, 𝑆𝑚+𝑛 = 0, and 𝑆𝑚+𝑘 ≠ 0 for all
𝑘 ∈ {1, … , 𝑛 − 1}. Once the walker touches 0 the process restarts anew, the
statistical properties of all excursions are identical. We can therefore focus on
the first excursion, whose duration is given by the first return time 𝜏0.

Our goal is to compute the probability distribution of the length of an excursion,
i.e., ℙ(𝜏0 = 𝑛). Note that if 𝑆𝑛 = 0, 𝑛 must be even, so we only need to compute
ℙ(𝜏0 = 2𝑘) for 𝑘 ≥ 1. If the walk is not symmetric, such a length has a non-zero
probability of being infinite.

Exercise 0.4. For |𝑠| < 1 define

𝑣(𝑥, 𝑠) ∶= 𝔼𝑥[𝑠𝜏0] =
∞

∑
𝑘=0

ℙ𝑥(𝜏0 = 𝑘)𝑠𝑘

where 𝔼𝑥 means expected value for the random walk starting in the point 𝑥 (this
is the same as starting at 0 and hitting the point −𝑥).
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• Prove that 𝑣(𝑥, 𝑠) = 𝑣(1, 𝑠)𝑥 for 𝑥 ≥ 1, and 𝑣(𝑥, 𝑠) = 𝑣(−1, 𝑠)−𝑥 for 𝑥 ≤ −1.
Hint: starting at 𝑥 = 2, we first need to 1, then from 1 need to hit 0.

• Use the previous fact to compute 𝑣(𝑥, 𝑠) for all 𝑥, 𝑠 including 𝑥 = 0. Check
in particular

𝑣(0, 𝑠) = 1−√1 − 4𝑝(1 − 𝑝)𝑠2, 𝑣(1, 𝑠) = 𝑣(0, 𝑠)/(2𝑠𝑝), 𝑣(−1, 𝑠) = 𝑣(0, 𝑠)/(2𝑠(1−𝑝))
• Deduce 𝜃𝑝 = ℙ0(𝜏0 = ∞) = |1 − 2𝑝|, which in particular proves the results
of the previous section.

• Use the Taylor formula

1 −
√

1 − 4𝑡 =
∞

∑
𝑛=1

𝐴𝑛𝑡𝑛, 𝐴𝑛 = (2𝑛)!
(2𝑛 − 1)(𝑛!)2

to deduce that
ℙ0(𝜏0 = 2𝑘) = 𝐴𝑘𝑝𝑘(1 − 𝑝)𝑘 (6)

One may have a purely combinatorial proof of the same fact.

Lemma 0.1 (The Reflection Principle). Let 𝑆𝑛 be a symmetric random walk. For
any integers 𝑎 > 𝑏 > 0, the number of paths from the origin to the point (𝑛, 𝑏)
that touch or cross the level 𝑎 is equal to the number of paths from the origin to
the point (𝑛, 2𝑎 − 𝑏).

Lemma 0.1. Let a path (𝑆0, 𝑆1, … , 𝑆𝑛) start at 𝑆0 = 0 and end at 𝑆𝑛 = 𝑏. Sup-
pose this path touches or crosses the level 𝑎. Let 𝑘 = inf{𝑗 ≥ 1 ∶ 𝑆𝑗 = 𝑎} be the
first time the path hits 𝑎.
We can create a new, reflected path (𝑆′

0, … , 𝑆′
𝑛), providing an involutive bijection

between paths crossing 𝑎 and finishing at 𝑏, and paths finishing at 2𝑎−𝑏. Define:
• For 𝑗 ≤ 𝑘, let 𝑆′

𝑗 = 𝑆𝑗. The new path is identical to the old one up to the
first time it hits 𝑎.

• For 𝑗 > 𝑘, let 𝑆′
𝑗 = 𝑎 − (𝑆𝑗 − 𝑎) = 2𝑎 − 𝑆𝑗. We reflect the remainder of the

path in the line 𝑦 = 𝑎.
The original path starts at (0, 0) and ends at (𝑛, 𝑏). The new path also starts at
(0, 0) (since 𝑘 ≥ 1) and ends at (𝑛, 𝑆′

𝑛) = (𝑛, 2𝑎 − 𝑆𝑛) = (𝑛, 2𝑎 − 𝑏).

Exercise 0.5. Use Lemma 0.1 to prove directly ℙ0(𝜏0 = 2𝑘) = 𝐴𝑘𝑝𝑘(1 − 𝑝)𝑘
counting the paths starting and finishing at 0 for the first time after 2𝑘 steps.
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Remark. Using Stirling’s approximation on Equation 6, we find that for 𝑝 = 1/2

ℙ(𝜏0 = 2𝑘) ≈ 1
2√𝜋𝑘−3/2(1 + 𝑜𝑘(1))

Thus 𝔼[𝜏0] = ∑𝑘 2𝑘ℙ(𝜏0 = 2𝑘) = ∞. This means that while a return is certain,
∑𝑘 ℙ(𝜏0 = 2𝑘) = 1, the expected time of the first return is infinite.

Exercise 0.6 (Paths in the positive half-plane). For a symmetric walk, find the
number of paths from (0, 0) to (𝑛, 𝑦) (with 𝑦 > 0) that remain strictly positive for
all times 𝑘 ∈ {1, … , 𝑛}.

Solution

The path must start with a step to (1, 1). It must then go from (1, 1) to (𝑛, 𝑦)
in 𝑛−1 steps without hitting the level 𝑦 = 0. The total number of paths from
(1, 1) to (𝑛, 𝑦) is 𝑁((1, 1) → (𝑛, 𝑦)). By the reflection principle (Lemma 0.1
with 𝑎 = 1), the number of paths that touch level 0 is the number of paths
from (1, −1) to (𝑛, 𝑦), i.e., 𝑁((1, −1) → (𝑛, 𝑦)). The desired number of
paths is therefore:

𝑁>0 = 𝑁((1, 1) → (𝑛, 𝑦)) − 𝑁((1, −1) → (𝑛, 𝑦))

Using the formula 𝑁((𝑠, 𝑎) → (𝑡, 𝑏)) = ( 𝑡−𝑠
(𝑏−𝑎+𝑡−𝑠)/2), this becomes:

𝑁>0 = ( 𝑛 − 1
(𝑦 − 1 + 𝑛 − 1)/2)−( 𝑛 − 1

(𝑦 − (−1) + 𝑛 − 1)/2) = 𝑦
𝑛( 𝑛

(𝑛 + 𝑦)/2) = 𝑦
𝑛𝑁((0, 0) → (𝑛, 𝑦))

Exercise 0.7 (Maximum at the endpoint). Find the number of paths from (0, 0)
to (𝑛, 𝑦) such that 𝑆𝑘 < 𝑦 for all 𝑘 ∈ {0, … , 𝑛 − 1}.

Solution

This problem is symmetric to the previous one. Consider the time-reversed
path from (𝑛, 𝑦) to (0, 0). This is a path of length 𝑛 from (0, 0) to (𝑛, −𝑦). The
condition 𝑆𝑘 < 𝑦 on the original path is equivalent to the new path 𝑆′

𝑘 > −𝑦
for 𝑘 ∈ {1, … , 𝑛}. By flipping the sign, this is the same as the number of
paths from (0, 0) to (𝑛, 𝑦) that stay strictly positive. The answer is therefore
the same as in Exercise 0.6: 𝑦

𝑛𝑁((0, 0) → (𝑛, 𝑦)).
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Exercise 0.8 (Dyck paths). Find the number of symmetric random walk paths
from (0, 0) to (2𝑛, 0) that remain non-negative, i.e., 𝑆𝑘 ≥ 0 for all 𝑘 ∈ {0, … , 2𝑛}.

Solution

This is a classic problem for Dyck paths. The answer is the 𝑛-th Catalan
number, 𝐶𝑛.

𝐶𝑛 = 1
𝑛 + 1(2𝑛

𝑛 )

This can be derived using the reflection principle. The total number of paths
from (0, 0) to (2𝑛, 0) is (2𝑛

𝑛 ). The number of “bad” paths (those that drop
below the axis) is the number of paths that touch or cross the line 𝑦 = −1.
By the reflection principle, this is equal to the number of paths from (0, 0) to
(2𝑛, −2), which is ( 2𝑛

𝑛−1). The number of good paths is the difference:

(2𝑛
𝑛 ) − ( 2𝑛

𝑛 − 1) = 1
𝑛 + 1(2𝑛

𝑛 )

Exercise 0.9 (Bridges). Find the number of symmetric random walk paths from
(0, 0) to (2𝑛, 0) with strictly positive intermediate vertices, i.e., 𝑆𝑘 > 0 for 𝑘 ∈
{1, … , 2𝑛 − 1}.

Solution

Such a path must start with a step to (1, 1) and end with a step from (2𝑛 −
1, 1). The path segment from (1, 1) to (2𝑛 − 1, 1) has length 2𝑛 − 2 and
must not drop below level 𝑦 = 1. This is equivalent to a non-negative path
of length 2𝑛 − 2 from (0, 0) to (0, 0). From Exercise 0.8 (with 𝑛 replaced by
𝑛 − 1), this number is the (𝑛 − 1)-th Catalan number:

𝐶𝑛−1 = 1
𝑛(2𝑛 − 2

𝑛 − 1 )

The arcsin law

A surprising result concerns the time a symmetric random walk spends on one
side of the axis. It turns out that the most likely scenarios are for the walker to
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Figure 1: A path of the randomwalk is a concatenation of excursions. The point is
that, with higher and higher probability as we look at the picture from
far away (or as we increase the number of steps), we see very close
visits to 0, interrupted by very large excursions (indeed the length is
finite but with infinite expectation).
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spend almost all its time on the positive side, or almost all its time on the negative
side. This is quantified by the arcsine law. Hereafter we assume 𝑝 = 1/2.
To state the result precisely, we need a suitable definition for the time spent on
the positive side. Let 𝜋2𝑛 be the number of segments of the path (𝑆0, 𝑆1, … , 𝑆2𝑛)
that lie on or above the horizontal axis. That is,

𝜋2𝑛 ∶= |{𝑘 ∈ {1, … , 2𝑛} ∶ 𝑆𝑘−1 ≥ 0 and 𝑆𝑘 ≥ 0}|
Note that since 𝑆𝑘 can only change by ±1 at each step, a path cannot cross from
𝑆𝑘−1 > 0 to 𝑆𝑘 < 0 (or vice-versa) in a single step without passing through 0.
This implies that 𝜋2𝑛 must be an even integer.

We also define
𝐿2𝑛 = max{𝑚 ≤ 2𝑛 ∶ 𝑆𝑚 = 0}

as the time of the last visit to the origin up to time 2𝑛.

Theorem 0.1 (Lévy’s Arcsine Law). Let (𝑆𝑛)𝑛≥0 be a symmetric 1-d randomwalk
and 𝜋2𝑛 the number of segments on or above the axis, as defined above. The
fraction of time 𝜋2𝑛/(2𝑛) converges in distribution to the arcsine distribution
on [0, 1]:

lim
𝑛→∞

ℙ (𝜋2𝑛
2𝑛 ≤ 𝑥) = 2

𝜋 arcsin(√𝑥)

for any 𝑥 ∈ [0, 1].
Moreover 𝐿2𝑛 has the same distribution as 𝜋2𝑛 and thus the same result holds
for 𝐿2𝑛

The density of the arcsine distribution, 𝜚(𝑥) = (𝜋√𝑥(1 − 𝑥))−1, is U-shaped,
confirming that the walker most likely spends their time either on the positive or
negative side of the axis.

The core idea of the proof is to find an exact expression for ℙ(𝜋2𝑛 = 2𝑘) for finite
𝑛, and then use Stirling’s approximation to find the limit. For clarity we denote
𝑁((𝑠, 𝑎) → (𝑡, 𝑏)) the number of paths going from the point 𝑎 at time (number of
steps) 𝑠 to the point 𝑏 at time 𝑡. This is

𝑁((𝑠, 𝑎) → (𝑡, 𝑏)) = ( 𝑡 − 𝑠
(𝑏 − 𝑎 + 𝑡 − 𝑠)/2)

meaning 0 if (𝑏 − 𝑎 + 𝑡 − 𝑠) is odd.
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Figure 2: The density of the arcsin law diverges at 0 and 1, indicating that the
most likely scenarios are for the random walk to spend nearly all its
time on one side of the origin.
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Lemma 0.2. Then
ℙ(𝐿2𝑛 = 2𝑘) = 𝑢2𝑘𝑢2(𝑛−𝑘) (7)

where 𝑢2𝑚 is the probability of being at 0 after 2𝑚 steps, 𝑢2𝑚 = (2𝑚
𝑚 )4−𝑚.

Lemma 0.2. Let’s start from the case 𝑘 = 𝑛, that is let’s show ℙ(𝜏0 > 2𝑛) = 𝑢2𝑛.
A path does not return to 0 iff it stays strictly on the positive side or strictly on
the negative side. By symmetry, these two probabilities are equal. Let’s calculate
the probability of staying strictly positive, 𝑃(𝑆1 > 0, … , 𝑆2𝑛 > 0), that is 𝑆1 = 1
and the subsequent 2𝑛 − 1 steps starting from 1 never hitting 0.
The number of such paths can be found using the reflection principle (Lemma 0.1).
The total number of paths from (1, 1) that stay strictly above 0 for 2𝑛 − 1 steps is
given by the result of the following telescopic sum over all possible final positions
2𝑟 > 0:

∞
∑
𝑟=1

[𝑁((1, 1) → (2𝑛, 2𝑟)) − 𝑁((1, −1) → (2𝑛, 2𝑟))]

=
∞

∑
𝑟=1

[𝑁((0, 0) → (2𝑛 − 1, 2𝑟 − 1)) − 𝑁((0, 0) → (2𝑛 − 1, 2𝑟 + 1))] =

𝑁((0, 0) → (2𝑛 − 1, 1)) = (2𝑛 − 1
𝑛 )

For the symmetric walk, all paths have the same probability. So we can find the
probability of not returning to the origin:

ℙ(𝜏0 > 2𝑛) = 2ℙ(𝑆1 = 1, 𝑆2 ≥ 1, … 𝑆2𝑛 ≥ 1) = 2(2𝑛 − 1
𝑛 )2−2𝑛 = 𝑢2𝑛

Now let’s consider the generic case 𝑘 ≤ 𝑛. The event {𝐿2𝑛 = 2𝑘}means that the
walk is at the origin at time 2𝑘, and does not return to the origin between times
2𝑘 + 1 and 2𝑛. We can write this as:

ℙ(𝐿2𝑛 = 2𝑘) = ℙ(𝑆2𝑘 = 0 and 𝑆𝑗 ≠ 0 for 2𝑘 < 𝑗 ≤ 2𝑛)
But the event {𝑆2𝑘 = 0} is independent of the subsequent path:

ℙ(𝐿2𝑛 = 2𝑘) = ℙ(𝑆2𝑘 = 0) ℙ(𝜏 ′
0 > 2𝑛 − 2𝑘)

where 𝜏 ′
0 is the first return time for a new walk starting at 0 at time 2𝑘. Using

the result for 𝑘 = 𝑛 this becomes:
ℙ(𝐿2𝑛 = 2𝑘) = 𝑢2𝑘𝑢2(𝑛−𝑘)
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Figure 3: The number of (good) paths from the origin to the point B that stays
positive, you can subtract the paths that touch the origin (bad paths)
from all paths from the origin to B. The bad paths can be computed as
the number of paths starting with a -1 and reaching B.
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Exercise 0.10. Define 𝛼2𝑘,2𝑛 = ℙ(𝜋2𝑛 = 2𝑘). We want to prove that 𝛼2𝑘,2𝑛 =
𝑢2𝑘𝑢2(𝑛−𝑘). Let 𝑓2𝑚 = ℙ(𝜏0 = 2𝑚).
a) Prove that 𝛼2𝑘,2 = 𝑢2𝑘𝑢2−2𝑘 for 𝑘 = 0, 1.
b) Prove that 𝛼2𝑛,2𝑛 = 𝑢2𝑛.
c) Proceed by induction over 𝑛 to check that

𝛼2𝑘,2𝑛 = 1
2𝑢2𝑛−2𝑘

𝑘
∑
𝑚=1

𝑓2𝑚𝑢2𝑘−2𝑚 + 1
2𝑢2𝑘

𝑛−𝑘
∑
𝑚=1

𝑓2𝑚𝑢2𝑛−2𝑘−2𝑚

d) Conditioning on the time of first return, check that 𝑢2𝑘 = ∑𝑘
𝑚=1 𝑓2𝑚𝑢2(𝑘−𝑚).

e) Use points c. and d. to conclude.

From Lemma 0.2 and Exercise 0.10, we have got:

ℙ(𝜋2𝑛 = 2𝑘) = ℙ(𝐿2𝑛 = 2𝑘) = 𝑢2𝑘𝑢2(𝑛−𝑘) = (2𝑘
𝑘 )(2(𝑛 − 𝑘)

𝑛 − 𝑘 )4−𝑛 (8)

We can now prove the theorem.

Theorem 0.1. We are interested in the cumulative distribution of the fraction of
time 𝜋2𝑛

2𝑛 . Let 𝑥 ∈ (0, 1), then

ℙ (𝜋2𝑛
2𝑛 ≤ 𝑥) =

⌊𝑛𝑥⌋
∑
𝑗=0

ℙ(𝜋2𝑛 = 2𝑗) = ∫
⌊𝑛𝑥⌋/𝑛

0
𝜚𝑛(𝑦)𝑑𝑦 (9)

where
𝜚𝑛(𝑦) ∶= 𝑛ℙ(𝜋2𝑛 = 2𝑗) for 𝑗/𝑛 ≤ 𝑦 ≤ (𝑗 + 1)/𝑛

By Equation 5 and Equation 8

𝑛ℙ(𝜋2𝑛 = 2𝑗) = 𝑛𝑢2𝑗𝑢2(𝑛−𝑗) = 1
√𝜋𝑗/𝑛

1
√𝜋(1 − 𝑗/𝑛)

(1 − 𝜀𝑗)(1 − 𝜀𝑛−𝑗)

and we immediately see that 𝜚𝑛(𝑥) → 𝜚(𝑥) = (𝜋√𝑥(1 − 𝑥))−1 uniformly on
compact sets of (0, 1). Thus, passing to the limit 𝑛 → ∞ in Equation 9 we get
the theorem.

The equality in distribution of 𝜋2𝑛 and 𝐿2𝑛 is in Equation 8.

14



Multi-dimensional Random Walk

A natural generalization is the randomwalk on the 𝑙-dimensional integer latticeℤ𝑙.
The walker starts at a point x ∈ ℤ𝑙, S0 = x ∈ ℤ𝑙. At each step, it moves to one of
the 2𝑙 neighboring points with equal probability 1/(2𝑙). That is, S𝑛 = 𝑥+∑𝑛

𝑖=1 X𝑖,
where X𝑖 are independent random vectors taking values ±e𝑗 (where e𝑗 are the
standard basis vectors) with probability 1/(2𝑙).
As in the one-dimensional case, we can ask whether the walk is recurrent (returns
to the origin with probability 1) or transient. The answer, it turns out, depends
on the dimension 𝑙.

Characteristic function and transition probabilities

To analyze the multi-dimensional case, the characteristic function is a convenient
tool. Let ℙx(S𝑛 = y) be the probability that a walk starting at x is at point y after
𝑛 steps. The characteristic function of the random vector S𝑛 (conditional on
starting at x) is defined as:

𝐹(�, 𝑛, x) = 𝔼x[𝑒𝑖�⋅S𝑛] = ∑
y∈ℤ𝑙

ℙx(S𝑛 = y)𝑒𝑖�⋅y

where � = (𝜃1, … , 𝜃𝑙) ∈ 𝕋𝑙 ≃ (−𝜋, 𝜋]𝑙. Due to the independence of steps, we
have:

𝐹(�, 𝑛, x) = 𝑒𝑖�⋅x (𝔼[𝑒𝑖�⋅X1])𝑛

The expectation for a single step is:

𝔼[𝑒𝑖�⋅X1] =
𝑙

∑
𝑗=1

1
2𝑙(𝑒

𝑖𝜃𝑗 + 𝑒−𝑖𝜃𝑗) = 1
𝑙

𝑙
∑
𝑗=1

cos(𝜃𝑗) =∶ Φ(�)

Thus, 𝐹(�, 𝑛, x) = 𝑒𝑖�⋅x[Φ(�)]𝑛. The transition probabilities can be recovered via
the inverse Fourier transform:

ℙx(S𝑛 = y) = 1
(2𝜋)𝑙 ∫

(−𝜋,𝜋]𝑙
𝐹(�, 𝑛, x)𝑒−𝑖�⋅y𝑑� = 1

(2𝜋)𝑙 ∫
(−𝜋,𝜋]𝑙

𝑒𝑖�⋅(x−y)[Φ(�)]𝑛𝑑�
(10)
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Pólya’s Criterion: Recurrence and Transience

Wehave seen in Exercise 0.1 (which easily holds in any dimension), that if the walk
is transient, then the number of returns to 0 is a geometric random variable, thus
it has finite expectation. Therefore the walk is recurrent iff the expected number
of returns to the origin is infinite. Let’s denote this expectation by 𝑔(0,0) =
∑∞

𝑛=0 ℙ0(S𝑛 = 0). Using Equation 10, since |Φ(�)| < 1 but in two points (𝜃1 =
… = 𝜃𝑙 = 0 and $�_1=…=�_l=�):

𝑔(0,0) =
∞

∑
𝑛=0

1
(2𝜋)𝑙 ∫

(−𝜋,𝜋]𝑙
[Φ(�)]𝑛𝑑� = 1

(2𝜋)𝑙 ∫
(−𝜋,𝜋]𝑙

∞
∑
𝑛=0

[Φ(�)]𝑛𝑑� = 1
(2𝜋)𝑙 ∫

(−𝜋,𝜋]𝑙

1
1 − Φ(�)𝑑�

The walk is recurrent if this integral diverges, and transient if it converges. The
convergence is determined by the behavior of the integrand near the points where
the denominator is zero, i.e., � ≈ 0. Near the origin, cos(𝜃𝑗) ≈ 1 − 𝜃2

𝑗 /2, so:

1 − Φ(�) = 1 − 1
𝑙

𝑙
∑
𝑗=1

cos(𝜃𝑗) ≈ 1 − 1
𝑙

𝑙
∑
𝑗=1

(1 − 𝜃2
𝑗 /2) = 1

2𝑙
𝑙

∑
𝑗=1

𝜃2
𝑗 = ‖�‖2

2𝑙

Thus, the convergence of the integral depends on the convergence of ∫ 𝑑�
‖�‖2

near the origin. In polar coordinates, 𝑑� ∼ 𝑟𝑙−1𝑑𝑟, so the integral behaves like
∫0

𝑟𝑙−1
𝑟2 𝑑𝑟 = ∫0 𝑟𝑙−3𝑑𝑟.

• For 𝑙 = 1, the integral ∫ 𝑟−2𝑑𝑟 diverges. The walk is recurrent.
• For 𝑙 = 2, the integral ∫ 𝑟−1𝑑𝑟 diverges. The walk is recurrent.
• For 𝑙 ≥ 3, the exponent 𝑙 − 3 ≥ 0 > −1, so the integral converges. The walk
is transient.

This result is known as Pólya’s Theorem: the symmetric random walk on ℤ𝑙 is
recurrent for 𝑙 = 1, 2 and transient for 𝑙 ≥ 3. This is a special case of the result
stated in Remark 0.1.

Simulating the walk

We can easily check numerically the various statements, since the convergence
takes place quite quickly.
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First return to 0
We first computed explicitly the law of the first return to 0. Its expected value
is infinite, so one has to be careful in the simulation, and cut off the simulations
at a given number of steps. This introduces a bias that we report, but do not
compensate here since it is a negligible effect at this precision.

Figure 4: Empirical vs theoretical distribution of the first return to 0.

Arcsin law

Then we simulate via Monte Carlo the amount of time the random walk stays
positive.

Roughly speaking, these distributions are universal, meaning that they represent
the scaling limit of several different random dynamics. For instance, we can
change the law of the𝑋𝑖 to any centered distribution with finite variance (say 1),
to converge to the same law.

In this plot a continuous uniform distribution is used.
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Figure 5: The amount of time a random walk stays positive converges to the arc-
sin distribution.

18



Figure 6: The amount of time a randomwalk with continuous uniform increments,
stays positive.
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You can try to check the universality of the arcsin distribution. You can check
what happens for different distributions. If the distributions are centered but not
symmetric (e.g. a centered exponential𝑋 −𝔼[𝑋] with𝑋 exponential), what do

Recurrence and transience in higher dimension

If we run a 3-d random walk, say 𝑋, and take its projection 𝑌 on a horizontal
plane, the projected walk will not move when 𝑋 moves vertically. But if we skip
this time (which will not change the property of coming back to 0 or not), 𝑌 just
performs a 2-d random walk. It is clear that 𝑌 will intersect its own path (come
back where it was) much more often than 𝑋. Indeed, each time 𝑋 comes back
to 0, 𝑌 will also do it, while the opposite is not true (when 𝑌 is at the origin,
𝑋 may be at some point (0, 0, 𝑧)). This is even more true if we project on just
one coordinate axis. In other words, it is clear that the higher the dimension, the
more transient the walk is (for symmetric randomwalks). This informal argument
can be easily turned into a rigorous proof. This video shows the phenomenon
described.
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