
Statistical properties of 1‑d Randomwalks

Random walking on ℤ

This note explores some features of a 1‐dimensional random walk. We consider a random walker who, each
second, may take a step up with probability 𝑝 or a step down with probability 1 − 𝑝. For 𝑝 = 1/2, the walker
will get back to the origin with probability 1. One may then study the statistical properties of the randomwalk
while the walker is away from 0. Some statements are proved with different methods in different sections.
This page contains interactive content, feel free to explore andmodify it. Formore involvedmodifications, you
are encouraged to run and edit the interactive Jupyter Notebook instead. You can either:

• Run it on a computer with a Python/Jupyter‐lab installation (requires ipywidgets, numpy, mat-
plotlib).

• Run it using an online service. The official Jupyter website provides a free and open service. If you need
more computing power, you can import the notebook in Google Colab (requires a Google account).

Definitions

We begin with a formal definition of the random walk.

Definition 0.1 (1‐d RandomWalk). Let (𝑋𝑖)𝑖≥1 be a sequence of i.i.d. random variables with

ℙ(𝑋𝑖 = +1) = 𝑝 and ℙ(𝑋𝑖 = −1) = 1 − 𝑝

for some 𝑝 ∈ [0, 1]. The 1‐dimensional random walk starting at the origin is the sequence of random variables
(𝑆𝑛)𝑛≥0 defined by 𝑆0 ∶= 0 and

𝑆𝑛 ∶=
𝑛

∑
𝑖=1

𝑋𝑖 for 𝑛 ≥ 1 (1)

The walk is called symmetric if 𝑝 = 1/2 and asymmetric otherwise. We say the walker returns to the origin at
time 𝑛 if 𝑆𝑛 = 0. The first return time to the origin is the random variable

𝜏0 ∶= inf{𝑛 ≥ 1 ∶ 𝑆𝑛 = 0} (2)

where we set inf ∅ = ∞.

We first determine for which values of 𝑝 the walker is certain to return to the origin, namely ℙ(𝜏0 < ∞) = 1. Such
a walk is called recurrent. If ℙ(𝜏0 < ∞) < 1, the walk is called transient.

Will the walker get back to the origin?

The behavior of the walk is dramatically different in the symmetric versus the asymmetric case.
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The asymmetric case: escaping to infinity

If the walk is biased (𝑝 ≠ 1/2), there is a net drift in one direction. The Strong Law of Large Numbers (SLLN) is
sufficient to show that the walker almost surely moves away from the origin forever.

Proposition 0.1. If 𝑝 ≠ 1/2, the 1‐d random walk is transient. In fact, |𝑆𝑛| → ∞ almost surely, which implies that the
walker visits the origin only a finite number of times.

Proposition 0.1. The mean of a single step is 𝑚 ∶= 𝔼[𝑋𝑖] = 2𝑝 − 1. This 𝑚 ≠ 0 iff 𝑝 ≠ 1/2. By the Strong Law of
Large Numbers, we have almost surely

lim
𝑛→∞

𝑆𝑛
𝑛 = 𝑚

This implies that, if𝑚 ≠ 0, |𝑆𝑛| → ∞ almost surely. It thus can only take the value 0finitelymany times. Therefore,
the walk is transient.

Remark. We have just checked that the number of times the walker gets back to 0 is finite, with probability 1 if
𝑝 ≠ 1/2. A proper way to do it is to think that for each 𝑝 ∈ [0, 1] we have a probability measure ℙ𝑝 on the space of
trajectories X ∶ ℕ → ℤ. Then define a random variable

𝒩0 ≡ 𝒩0(X) ∶= |{𝑛 ∈ ℕ ∶ 𝑆𝑛 = 0}| ∈ ℕ ∪ {+∞}

This is the number of times the walker visits the origin. Proposition 0.1 can also be written

ℙ(𝒩0 < ∞) = 1 𝑝 ≠ 1/2

Exercise 0.1. Let 𝑝 ≠ 1/2. Prove that the random variable 𝒩0 follows a geometric distribution ℙ(𝒩0 = 𝑘) =
(1 − 𝜃)𝑘−1𝜃 for 𝑘 ≥ 1 and some 𝜃 = ℙ(𝜏0 = ∞) ∈ (0, 1).

Exercise 0.2. The geometric distribution of 𝒩0 in Exercise 0.1 depends on the parameter 𝜃, which in turn depends
on 𝑝, let’s denote it 𝜃𝑝. (Recall 𝑝 ≠ 1/2).

• Prove that 𝜃𝑝 = 𝜃1−𝑝.
• Prove that, for 𝑝 > 1/2, 𝑝 ↦ 𝜃𝑝 is strictly increasing. (Hint: draw two random walks, corresponding to

𝑝 > 𝑞 > 1/2. If the first step is −1, they both will get back to 0. If the first step is +1, can you realize them
simultaneously so that the one with parameter 𝑝 is never smaller than the one with parameter 𝑞?).

The symmetric case: a certain return

When the walk is symmetric, there is no drift. Onemight guess the walker could still drift away by chance. However,
it turns out that a return to the origin is almost sure. A powerful way to see this is to analyze the expected number
of returns.

For 𝜏 (0)
0 ∶= 0, define for 𝑛 ≥ 1

𝜏 (𝑛)
0 ≡ 𝜏 (𝑛)

0 (X) ∶= inf{𝑚 > 𝜏 (𝑛−1)
0 ∶ 𝑆𝑚 = 0}

so that 𝜏0 ≡ 𝜏 (1)
0 , see Equation 2. 𝜏 (𝑛)

0 is the 𝑛‐th time the walk touches the origin. We have the simple fact

ℙ(𝜏 (𝑛)
0 < ∞) = ℙ(𝜏0 < ∞)𝑛
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since indeed each time we visit 0, the process restarts anew. So the probability that we come back 𝑛 times, is exactly
the probability that we come back once, to the power 𝑛. This gives us a powerful tool to prove that ℙ(𝜏0 < ∞) = 1.
Indeed

∞
∑
𝑚=0

ℙ(𝑆𝑚 = 0) = 𝔼 [
∞

∑
𝑚=0

1𝑆𝑚=0] = 𝔼 [
∞

∑
𝑛=0

1𝜏(𝑛)
0 <∞]

=
∞

∑
𝑛=0

ℙ(𝜏0 < ∞)𝑛 = 1
1 − ℙ(𝜏0 < ∞)

That is (both sides may be +∞)

𝔼[𝒩0] =
∞

∑
𝑚=0

ℙ(𝑆𝑚 = 0) = 1
1 − ℙ(𝜏0 < ∞) (3)

Proposition 0.2. If 𝑝 = 1/2, the 1‐d symmetric random walk is recurrent, i.e., ℙ(𝜏0 < ∞) = 1.

It is worth recalling the Stirling’s bounds for the factorial

𝑛𝑛𝑒−𝑛√
2𝜋𝑛𝑒1/(12𝑛+1) ≤ 𝑛! ≤ 𝑛𝑛𝑒−𝑛√

2𝜋𝑛𝑒1/(12𝑛) 𝑛 ≥ 1 (4)

Proposition 0.2. For the walker to be at the origin at time 𝑛, it must have taken an equal number of steps up and
down. This is only possible if 𝑛 is even. Let 𝑛 = 2𝑘 for some 𝑘 ≥ 1. The number of paths of length 2𝑘 is 22𝑘.
The number of paths with exactly 𝑘 steps up and 𝑘 steps down is given by the binomial coefficient (2𝑘

𝑘 ). Thus, the
probability of being at the origin at time 2𝑘 is

ℙ(𝑆2𝑘 = 0) = (2𝑘
𝑘 ) (1

2)
2𝑘

If we use Stirling’s approximation (Equation 4) for the factorials in the last formula, we get for 𝑘 ≥ 1

ℙ(𝑆2𝑘 = 0) = 1√
𝜋𝑘

(1 − 𝜀𝑘), 1
8𝑘 + 3 ≤ 𝜀𝑘 ≤ 1

8𝑘 (5)

Since the series ∑𝑘 ℙ(𝑆2𝑘 = 0) diverges, we get the statement thanks to Equation 3.

Another proof of Proposition 0.2. Let 𝑝𝑥 be the probability that a walker starting at point 𝑥 will eventually hit 0. We
want to show that 𝑝𝑥 = 1 for all 𝑥 ∈ ℤ. Clearyl 𝑝0 = 1. For 𝑥 ≠ 0, by conditioning on the first step, we have:

𝑝𝑥 = 1
2𝑝𝑥−1 + 1

2𝑝𝑥+1, 𝑥 ∈ ℤ ∖ {0}

This equation implies that the points (𝑥−1, 𝑝𝑥−1), (𝑥, 𝑝𝑥), and (𝑥+1, 𝑝𝑥+1) are collinear. The only line that passes
through (0, 1) and remains bounded with 0 ≤ 𝑝𝑥 ≤ 1 for all 𝑥 is the constant line 𝑝𝑥 = 1. Thus, the walk is
recurrent.

Exercise 0.3. Use the same approach to prove that for 𝑝 ≠ 1/2, 1 − 𝜃𝑝 = ℙ(𝜏0 < ∞) < 1. Express 𝜃𝑝 using a
series.

Remark 0.1. The recurrence is not a trivial consequence of the symmetry. If wewere to performa symmetricwalk on
ℤ3 (indeed on any finitely generated group which is not virtually isomorphic to ℤ or ℤ2), the walk would be transient
despite the symmetry. Informally speaking, recurrence is a consequence of the symmetry and the fact that ℤ is a
small graph.
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Excursions

The statistical properties of the so called excursions turn out to be quite interesting. We give a brief overview of the
law of the return time here.

Definition 0.2 (Excursion). A path segment (𝑆𝑚, 𝑆𝑚+1, … , 𝑆𝑚+𝑛) is an an excursion from 0 of length 𝑛 if 𝑆𝑚 = 0,
𝑆𝑚+𝑛 = 0, and 𝑆𝑚+𝑘 ≠ 0 for all 𝑘 ∈ {1, … , 𝑛 − 1}. Once the walker touches 0 the process restarts anew, the
statistical properties of all excursions are identical. We can therefore focus on the first excursion, whose duration
is given by the first return time 𝜏0.

Our goal is to compute the probability distribution of the length of an excursion, i.e.,ℙ(𝜏0 = 𝑛). Note that if𝑆𝑛 = 0,
𝑛 must be even, so we only need to compute ℙ(𝜏0 = 2𝑘) for 𝑘 ≥ 1. If the walk is not symmetric, such a length has
a non‐zero probability of being infinite.

Exercise 0.4. For |𝑠| < 1 define

𝑣(𝑥, 𝑠) ∶= 𝔼𝑥[𝑠𝜏0] =
∞

∑
𝑘=0

ℙ𝑥(𝜏0 = 𝑘)𝑠𝑘

where 𝔼𝑥 means expected value for the random walk starting in the point 𝑥 (this is the same as starting at 0 and
hitting the point −𝑥).

• Prove that 𝑣(𝑥, 𝑠) = 𝑣(1, 𝑠)𝑥 for 𝑥 ≥ 1, and 𝑣(𝑥, 𝑠) = 𝑣(−1, 𝑠)−𝑥 for 𝑥 ≤ −1. Hint: starting at 𝑥 = 2, we
first need to hit 1, then from 1 need to hit 0.

• Use the previous fact to compute 𝑣(𝑥, 𝑠) for all 𝑥, 𝑠 including 𝑥 = 0. Check in particular

𝑣(0, 𝑠) = 1 − √1 − 4𝑝(1 − 𝑝)𝑠2, 𝑣(1, 𝑠) = 𝑣(0, 𝑠)/(2𝑠𝑝), 𝑣(−1, 𝑠) = 𝑣(0, 𝑠)/(2𝑠(1 − 𝑝))

• Deduce 𝜃𝑝 = ℙ0(𝜏0 = ∞) = |1 − 2𝑝|, which in particular proves the results of the previous section.
• Use the Taylor formula

1 −
√

1 − 4𝑡 =
∞

∑
𝑛=1

𝐴𝑛𝑡𝑛, 𝐴𝑛 = (2𝑛)!
(2𝑛 − 1)(𝑛!)2

to deduce that
ℙ0(𝜏0 = 2𝑘) = 𝐴𝑘𝑝𝑘(1 − 𝑝)𝑘 (6)

One may have a purely combinatorial proof of the same fact.

Lemma 0.1 (The Reflection Principle). Let 𝑆𝑛 be a symmetric random walk. For any integers 𝑎 > 𝑏 > 0, the number of
paths from the origin to the point (𝑛, 𝑏) that touch or cross the level 𝑎 is equal to the number of paths from the origin to the
point (𝑛, 2𝑎 − 𝑏).

Lemma 0.1. Let a path (𝑆0, 𝑆1, … , 𝑆𝑛) start at 𝑆0 = 0 and end at 𝑆𝑛 = 𝑏. Suppose this path touches or crosses the
level 𝑎. Let 𝑘 = inf{𝑗 ≥ 1 ∶ 𝑆𝑗 = 𝑎} be the first time the path hits 𝑎.
We can create a new, reflected path (𝑆′

0, … , 𝑆′
𝑛), providing an involutive bijection between paths crossing 𝑎 and

finishing at 𝑏, and paths finishing at 2𝑎 − 𝑏. Define:
• For 𝑗 ≤ 𝑘, let 𝑆′

𝑗 = 𝑆𝑗. The new path is identical to the old one up to the first time it hits 𝑎.
• For 𝑗 > 𝑘, let 𝑆′

𝑗 = 𝑎 − (𝑆𝑗 − 𝑎) = 2𝑎 − 𝑆𝑗. We reflect the remainder of the path in the line 𝑦 = 𝑎.

The original path starts at (0, 0) and ends at (𝑛, 𝑏). The new path also starts at (0, 0) (since 𝑘 ≥ 1) and ends at
(𝑛, 𝑆′

𝑛) = (𝑛, 2𝑎 − 𝑆𝑛) = (𝑛, 2𝑎 − 𝑏).
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Exercise 0.5. Use Lemma 0.1 to prove directly ℙ0(𝜏0 = 2𝑘) = 𝐴𝑘𝑝𝑘(1 − 𝑝)𝑘 counting the paths starting and
finishing at 0 for the first time after 2𝑘 steps.

Remark. Using Stirling’s approximation on Equation 6, we find that for 𝑝 = 1/2

ℙ(𝜏0 = 2𝑘) ≈ 1
2√𝜋𝑘−3/2(1 + 𝑜𝑘(1))

Thus𝔼[𝜏0] = ∑𝑘 2𝑘ℙ(𝜏0 = 2𝑘) = ∞. Thismeans that while a return is certain,∑𝑘 ℙ(𝜏0 = 2𝑘) = 1, the expected
time of the first return is infinite.

Exercise 0.6 (Paths in the positive half‐plane). For a symmetric walk, find the number of paths from (0, 0) to (𝑛, 𝑦)
(with 𝑦 > 0) that remain strictly positive for all times 𝑘 ∈ {1, … , 𝑛}.

Solution

The path must start with a step to (1, 1). It must then go from (1, 1) to (𝑛, 𝑦) in 𝑛 − 1 steps without hitting the
level 𝑦 = 0. The total number of paths from (1, 1) to (𝑛, 𝑦) is 𝑁((1, 1) → (𝑛, 𝑦)). By the reflection principle
(Lemma 0.1 with 𝑎 = 1), the number of paths that touch level 0 is the number of paths from (1, −1) to (𝑛, 𝑦),
i.e., 𝑁((1, −1) → (𝑛, 𝑦)). The desired number of paths is therefore:

𝑁>0 = 𝑁((1, 1) → (𝑛, 𝑦)) − 𝑁((1, −1) → (𝑛, 𝑦))

Using the formula 𝑁((𝑠, 𝑎) → (𝑡, 𝑏)) = ( 𝑡−𝑠
(𝑏−𝑎+𝑡−𝑠)/2), this becomes:

𝑁>0 = ( 𝑛 − 1
(𝑦 − 1 + 𝑛 − 1)/2) − ( 𝑛 − 1

(𝑦 − (−1) + 𝑛 − 1)/2) = 𝑦
𝑛( 𝑛

(𝑛 + 𝑦)/2) = 𝑦
𝑛𝑁((0, 0) → (𝑛, 𝑦))

Exercise 0.7 (Maximum at the endpoint). Find the number of paths from (0, 0) to (𝑛, 𝑦) such that 𝑆𝑘 < 𝑦 for all
𝑘 ∈ {0, … , 𝑛 − 1}.

Solution

This problem is symmetric to the previous one. Consider the time‐reversed path from (𝑛, 𝑦) to (0, 0). This is
a path of length 𝑛 from (0, 0) to (𝑛, −𝑦). The condition 𝑆𝑘 < 𝑦 on the original path is equivalent to the new
path 𝑆′

𝑘 > −𝑦 for 𝑘 ∈ {1, … , 𝑛}. By flipping the sign, this is the same as the number of paths from (0, 0) to
(𝑛, 𝑦) that stay strictly positive. The answer is therefore the same as in Exercise 0.6: 𝑦

𝑛𝑁((0, 0) → (𝑛, 𝑦)).

Exercise 0.8 (Dyck paths). Find the number of symmetric random walk paths from (0, 0) to (2𝑛, 0) that remain
non‐negative, i.e., 𝑆𝑘 ≥ 0 for all 𝑘 ∈ {0, … , 2𝑛}.

Solution

This is a classic problem for Dyck paths. The answer is the 𝑛‐th Catalan number, 𝐶𝑛.

𝐶𝑛 = 1
𝑛 + 1(2𝑛

𝑛 )

This can be derived using the reflection principle. The total number of paths from (0, 0) to (2𝑛, 0) is (2𝑛
𝑛 ).

The number of “bad” paths (those that drop below the axis) is the number of paths that touch or cross the line
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𝑦 = −1. By the reflection principle, this is equal to the number of paths from (0, 0) to (2𝑛, −2), which is ( 2𝑛
𝑛−1).

The number of good paths is the difference:

(2𝑛
𝑛 ) − ( 2𝑛

𝑛 − 1) = 1
𝑛 + 1(2𝑛

𝑛 )

Exercise 0.9 (Bridges). Find the number of symmetric randomwalk paths from (0, 0) to (2𝑛, 0)with strictly positive
intermediate vertices, i.e., 𝑆𝑘 > 0 for 𝑘 ∈ {1, … , 2𝑛 − 1}.

Solution

Such a path must start with a step to (1, 1) and end with a step from (2𝑛 − 1, 1). The path segment from (1, 1)
to (2𝑛 − 1, 1) has length 2𝑛 − 2 and must not drop below level 𝑦 = 1. This is equivalent to a non‐negative
path of length 2𝑛 − 2 from (0, 0) to (0, 0). From Exercise 0.8 (with 𝑛 replaced by 𝑛 − 1), this number is the
(𝑛 − 1)‐th Catalan number:

𝐶𝑛−1 = 1
𝑛(2𝑛 − 2

𝑛 − 1 )

Figure 1: A path of the random walk is a concatenation of excursions. The point is that, with higher and higher
probability aswe look at the picture from far away (or aswe increase the number of steps), we see very close
visits to 0, interrupted by very large excursions (indeed the length is finite but with infinite expectation).
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The arcsin law

A surprising result concerns the time a symmetric randomwalk spends on one side of the axis. It turns out that the
most likely scenarios are for the walker to spend almost all its time on the positive side, or almost all its time on the
negative side. This is quantified by the arcsine law. Hereafter we assume 𝑝 = 1/2.
To state the result precisely, we need a suitable definition for the time spent on the positive side. Let 𝜋2𝑛 be the
number of segments of the path (𝑆0, 𝑆1, … , 𝑆2𝑛) that lie on or above the horizontal axis. That is,

𝜋2𝑛 ∶= |{𝑘 ∈ {1, … , 2𝑛} ∶ 𝑆𝑘−1 ≥ 0 and 𝑆𝑘 ≥ 0}|

Note that since 𝑆𝑘 can only change by ±1 at each step, a path cannot cross from 𝑆𝑘−1 > 0 to 𝑆𝑘 < 0 (or vice‐versa)
in a single step without passing through 0. This implies that 𝜋2𝑛 must be an even integer.

We also define
𝐿2𝑛 = max{𝑚 ≤ 2𝑛 ∶ 𝑆𝑚 = 0}

as the time of the last visit to the origin up to time 2𝑛.

Theorem 0.1 (Lévy’s Arcsine Law). Let (𝑆𝑛)𝑛≥0 be a symmetric 1‐d random walk and 𝜋2𝑛 the number of segments on
or above the axis, as defined above. The fraction of time 𝜋2𝑛/(2𝑛) converges in distribution to the arcsine distribution on
[0, 1]:

lim
𝑛→∞

ℙ (𝜋2𝑛
2𝑛 ≤ 𝑥) = 2

𝜋 arcsin(√𝑥)

for any 𝑥 ∈ [0, 1].
Moreover 𝐿2𝑛 has the same distribution as 𝜋2𝑛 and thus the same result holds for 𝐿2𝑛

The density of the arcsine distribution, 𝜚(𝑥) = (𝜋√𝑥(1 − 𝑥))−1, is U‐shaped, confirming that the walker most
likely spends their time either on the positive or negative side of the axis.

The core idea of the proof is to find an exact expression for ℙ(𝜋2𝑛 = 2𝑘) for finite 𝑛, and then use Stirling’s approx‐
imation to find the limit. For clarity we denote 𝑁((𝑠, 𝑎) → (𝑡, 𝑏)) the number of paths going from the point 𝑎 at
time (number of steps) 𝑠 to the point 𝑏 at time 𝑡. This is

𝑁((𝑠, 𝑎) → (𝑡, 𝑏)) = ( 𝑡 − 𝑠
(𝑏 − 𝑎 + 𝑡 − 𝑠)/2)

meaning 0 if (𝑏 − 𝑎 + 𝑡 − 𝑠) is odd.

Lemma 0.2. Then
ℙ(𝐿2𝑛 = 2𝑘) = 𝑢2𝑘𝑢2(𝑛−𝑘) (7)

where 𝑢2𝑚 is the probability of being at 0 after 2𝑚 steps, 𝑢2𝑚 = (2𝑚
𝑚 )4−𝑚.

Lemma 0.2. Let’s start from the case 𝑘 = 𝑛, that is let’s show ℙ(𝜏0 > 2𝑛) = 𝑢2𝑛. A path does not return to 0 iff
it stays strictly on the positive side or strictly on the negative side. By symmetry, these two probabilities are equal.
Let’s calculate the probability of staying strictly positive,𝑃 (𝑆1 > 0, … , 𝑆2𝑛 > 0), that is𝑆1 = 1 and the subsequent
2𝑛 − 1 steps starting from 1 never hitting 0.
The number of such paths can be found using the reflection principle (Lemma 0.1). The total number of paths from
(1, 1) that stay strictly above 0 for 2𝑛−1 steps is given by the result of the following telescopic sum over all possible
final positions 2𝑟 > 0:
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Figure 2: Thedensity of the arcsin lawdiverges at0 and1, indicating that themost likely scenarios are for the random
walk to spend nearly all its time on one side of the origin.
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∞
∑
𝑟=1

[𝑁((1, 1) → (2𝑛, 2𝑟)) − 𝑁((1, −1) → (2𝑛, 2𝑟))]

=
∞

∑
𝑟=1

[𝑁((0, 0) → (2𝑛 − 1, 2𝑟 − 1)) − 𝑁((0, 0) → (2𝑛 − 1, 2𝑟 + 1))] =

𝑁((0, 0) → (2𝑛 − 1, 1)) = (2𝑛 − 1
𝑛 )

Figure 3: The number of (good) paths from the origin to the point B that stays positive, you can subtract the paths
that touch the origin (bad paths) from all paths from the origin to B. The bad paths can be computed as the
number of paths starting with a ‐1 and reaching B.

For the symmetric walk, all paths have the same probability. So we can find the probability of not returning to the
origin:

ℙ(𝜏0 > 2𝑛) = 2ℙ(𝑆1 = 1, 𝑆2 ≥ 1, … 𝑆2𝑛 ≥ 1) = 2(2𝑛 − 1
𝑛 )2−2𝑛 = 𝑢2𝑛

Now let’s consider the generic case 𝑘 ≤ 𝑛. The event {𝐿2𝑛 = 2𝑘} means that the walk is at the origin at time 2𝑘,
and does not return to the origin between times 2𝑘 + 1 and 2𝑛. We can write this as:

ℙ(𝐿2𝑛 = 2𝑘) = ℙ(𝑆2𝑘 = 0 and 𝑆𝑗 ≠ 0 for 2𝑘 < 𝑗 ≤ 2𝑛)

But the event {𝑆2𝑘 = 0} is independent of the subsequent path:

ℙ(𝐿2𝑛 = 2𝑘) = ℙ(𝑆2𝑘 = 0) ℙ(𝜏 ′
0 > 2𝑛 − 2𝑘)
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where 𝜏 ′
0 is the first return time for a new walk starting at 0 at time 2𝑘. Using the result for 𝑘 = 𝑛 this becomes:

ℙ(𝐿2𝑛 = 2𝑘) = 𝑢2𝑘𝑢2(𝑛−𝑘)

Exercise 0.10. Define 𝛼2𝑘,2𝑛 = ℙ(𝜋2𝑛 = 2𝑘). We want to prove that 𝛼2𝑘,2𝑛 = 𝑢2𝑘𝑢2(𝑛−𝑘). Let 𝑓2𝑚 = ℙ(𝜏0 = 2𝑚).
a. Prove that 𝛼2𝑘,2 = 𝑢2𝑘𝑢2−2𝑘 for 𝑘 = 0, 1.
b. Prove that 𝛼2𝑛,2𝑛 = 𝑢2𝑛.
c. Proceed by induction over 𝑛 to check that, for 𝑘 = 1, … , 𝑛 − 1

𝛼2𝑘,2𝑛 = 1
2𝑢2𝑛−2𝑘

𝑘
∑
𝑚=1

𝑓2𝑚𝑢2𝑘−2𝑚 + 1
2𝑢2𝑘

𝑛−𝑘
∑
𝑚=1

𝑓2𝑚𝑢2𝑛−2𝑘−2𝑚

d. Conditioning on the time of first return, check that 𝑢2𝑘 = ∑𝑘
𝑚=1 𝑓2𝑚𝑢2(𝑘−𝑚).

e. Use points c. and d. to conclude.

From Lemma 0.2 and Exercise 0.10, we get:

ℙ(𝜋2𝑛 = 2𝑘) = ℙ(𝐿2𝑛 = 2𝑘) = 𝑢2𝑘𝑢2(𝑛−𝑘) = (2𝑘
𝑘 )(2(𝑛 − 𝑘)

𝑛 − 𝑘 )4−𝑛 (8)

We can now prove the theorem.

Theorem 0.1. We are interested in the cumulative distribution of the fraction of time 𝜋2𝑛
2𝑛 . Let 𝑥 ∈ (0, 1), then

ℙ (𝜋2𝑛
2𝑛 ≤ 𝑥) =

⌊𝑛𝑥⌋
∑
𝑗=0

ℙ(𝜋2𝑛 = 2𝑗) = ∫
⌊𝑛𝑥⌋/𝑛

0
𝜚𝑛(𝑦)𝑑𝑦 (9)

where
𝜚𝑛(𝑦) ∶= 𝑛ℙ(𝜋2𝑛 = 2𝑗) for 𝑗/𝑛 ≤ 𝑦 ≤ (𝑗 + 1)/𝑛

By Equation 5 and Equation 8

𝑛ℙ(𝜋2𝑛 = 2𝑗) = 𝑛𝑢2𝑗𝑢2(𝑛−𝑗) = 1
√𝜋𝑗/𝑛

1
√𝜋(1 − 𝑗/𝑛)

(1 − 𝜀𝑗)(1 − 𝜀𝑛−𝑗)

and we immediately see that 𝜚𝑛(𝑥) → 𝜚(𝑥) = (𝜋√𝑥(1 − 𝑥))−1 uniformly on compact sets of (0, 1). Thus, passing
to the limit 𝑛 → ∞ in Equation 9 we get the theorem.

The equality in distribution of 𝜋2𝑛 and 𝐿2𝑛 is in Equation 8.

Multi‑dimensional RandomWalk

A natural generalization is the random walk on the 𝑙‐dimensional integer lattice ℤ𝑙. The walker starts at a point
x ∈ ℤ𝑙, S0 = x ∈ ℤ𝑙. At each step, it moves to one of the 2𝑙 neighboring points with equal probability 1/(2𝑙). That
is, S𝑛 = 𝑥 + ∑𝑛

𝑖=1 X𝑖, where X𝑖 are independent random vectors taking values ±e𝑗 (where e𝑗 are the standard basis
vectors) with probability 1/(2𝑙).
As in the one‐dimensional case, we can ask whether the walk is recurrent (returns to the origin with probability 1)
or transient. The answer, it turns out, depends on the dimension 𝑙.

10



Characteristic function and transition probabilities

To analyze the multi‐dimensional case, the characteristic function is a convenient tool. Let ℙx(S𝑛 = y) be the
probability that a walk starting at x is at point y after 𝑛 steps. The characteristic function of the random vector S𝑛
(conditional on starting at x) is defined as:

𝐹(�, 𝑛, x) = 𝔼x[𝑒𝑖�⋅S𝑛] = ∑
y∈ℤ𝑙

ℙx(S𝑛 = y)𝑒𝑖�⋅y

where � = (𝜃1, … , 𝜃𝑙) ∈ 𝕋𝑙 ≃ (−𝜋, 𝜋]𝑙. Due to the independence of steps, we have:

𝐹(�, 𝑛, x) = 𝑒𝑖�⋅x (𝔼[𝑒𝑖�⋅X1])𝑛

The expectation for a single step is:

𝔼[𝑒𝑖�⋅X1] =
𝑙

∑
𝑗=1

1
2𝑙(𝑒

𝑖𝜃𝑗 + 𝑒−𝑖𝜃𝑗) = 1
𝑙

𝑙
∑
𝑗=1

cos(𝜃𝑗) =∶ Φ(�)

Thus, 𝐹(�, 𝑛, x) = 𝑒𝑖�⋅x[Φ(�)]𝑛. The transition probabilities can be recovered via the inverse Fourier transform:

ℙx(S𝑛 = y) = 1
(2𝜋)𝑙 ∫

(−𝜋,𝜋]𝑙
𝐹(�, 𝑛, x)𝑒−𝑖�⋅y𝑑� = 1

(2𝜋)𝑙 ∫
(−𝜋,𝜋]𝑙

𝑒𝑖�⋅(x−y)[Φ(�)]𝑛𝑑� (10)

Pólya’s Criterion: Recurrence and Transience

We have seen in Exercise 0.1 (which easily holds in any dimension), that if the walk is transient, then the number
of returns to 0 is a geometric random variable, thus it has finite expectation. Therefore the walk is recurrent iff the
expected number of returns to the origin is infinite. Let’s denote this expectation by 𝑔(0, 0) = ∑∞

𝑛=0 ℙ0(S𝑛 = 0).
Using Equation 10, since |Φ(�)| < 1 but in two points (𝜃1 = … = 𝜃𝑙 = 0 and 𝜃1 = … = 𝜃𝑙 = 𝜋):

𝑔(0, 0) =
∞

∑
𝑛=0

1
(2𝜋)𝑙 ∫

(−𝜋,𝜋]𝑙
[Φ(�)]𝑛𝑑� = 1

(2𝜋)𝑙 ∫
(−𝜋,𝜋]𝑙

∞
∑
𝑛=0

[Φ(�)]𝑛𝑑� = 1
(2𝜋)𝑙 ∫

(−𝜋,𝜋]𝑙

1
1 − Φ(�)𝑑�

The walk is recurrent if this integral diverges, and transient if it converges. The convergence is determined by the
behavior of the integrand near the points where the denominator is zero, i.e., � ≈ 0. Near the origin, cos(𝜃𝑗) ≈
1 − 𝜃2

𝑗 /2, so:

1 − Φ(�) = 1 − 1
𝑙

𝑙
∑
𝑗=1

cos(𝜃𝑗) ≈ 1 − 1
𝑙

𝑙
∑
𝑗=1

(1 − 𝜃2
𝑗 /2) = 1

2𝑙
𝑙

∑
𝑗=1

𝜃2
𝑗 = ‖�‖2

2𝑙

Thus, the convergence of the integral depends on the convergence of ∫ 𝑑�
‖�‖2 near the origin. In polar coordinates,

𝑑� ∼ 𝑟𝑙−1𝑑𝑟, so the integral behaves like ∫0
𝑟𝑙−1
𝑟2 𝑑𝑟 = ∫0 𝑟𝑙−3𝑑𝑟.

• For 𝑙 = 1, the integral ∫ 𝑟−2𝑑𝑟 diverges. The walk is recurrent.
• For 𝑙 = 2, the integral ∫ 𝑟−1𝑑𝑟 diverges. The walk is recurrent.
• For 𝑙 ≥ 3, the exponent 𝑙 − 3 ≥ 0 > −1, so the integral converges. The walk is transient.

This result is known as Pólya’s Theorem: the symmetric random walk on ℤ𝑙 is recurrent for 𝑙 = 1, 2 and transient
for 𝑙 ≥ 3. This is a special case of the result stated in Remark 0.1.
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Simulating the walk

We can easily check numerically the various statements, since the convergence takes place quite quickly.

First return to 0
We first computed explicitly the law of the first return to 0. Its expected value is infinite, so one has to be careful in
the simulation, and cut off the simulations at a given number of steps. This introduces a bias that we report, but do
not compensate here since it is a negligible effect at this precision.

Figure 4: Empirical vs theoretical distribution of the first return to 0.

Arcsin law

Then we simulate via Monte Carlo the amount of time the random walk stays positive.

Roughly speaking, these distributions are universal,meaning that they represent the scaling limit of several different
random dynamics. For instance, we can change the law of the 𝑋𝑖 to any centered distribution with finite variance
(say 1), to converge to the same law.

In this plot a continuous uniform distribution is used.

You can try to check the universality of the arcsin distribution. You can check what happens for different distribu‐
tions. If the distributions are centered but not symmetric (e.g. a centered exponential𝑋−𝔼[𝑋]with𝑋 exponential),
what do
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Figure 5: The amount of time a random walk stays positive converges to the arcsin distribution.
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Figure 6: The amount of time a random walk with continuous uniform increments, stays positive.
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Recurrence and transience in higher dimension

If we run a 3‐d randomwalk, say𝑋, and take its projection𝑌 on a horizontal plane, the projectedwalkwill notmove
when 𝑋 moves vertically. But if we skip this time (which will not change the property of coming back to 0 or not), 𝑌
just performs a 2‐d random walk. It is clear that 𝑌 will intersect its own path (come back where it was) much more
often than𝑋. Indeed, each time𝑋 comes back to 0, 𝑌 will also do it, while the opposite is not true (when 𝑌 is at the
origin, 𝑋 may be at some point (0, 0, 𝑧)). This is even more true if we project on just one coordinate axis. In other
words, it is clear that the higher the dimension, the more transient the walk is (for symmetric random walks). This
informal argument can be easily turned into a rigorous proof. This video shows the phenomenon described.

../media/rw_recurrence.webm
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