
Семинар 1

Задача 1, Сложность 1

Имеются две одинаковые монеты. На одной стороне каждой из них написан 0, а на другой 1. Монеты под‐
бросилиипосчитали сумму выпавших очков. Затемповторилибросок. Какова вероятность, что получилась
такая же сумма очков, если

a. монеты различимы?
b. монеты неразличимы (бозонные)?

Решение

Пусть 𝑆1, 𝑆2 — сумма результатов первого и второго подбрасывания. Нам нужно найти ℙ(𝑆1 = 𝑆2) =
∑2

𝑘=0 ℙ(𝑆1 = 𝑘)2.

a. Для различимыхмонет пространство элементарныхисходов— это {(0, 0), (0, 1), (1, 0), (1, 1)}, где
каждый исход имеет вероятность 1/4. Вероятности для сумм: ℙ(𝑆 = 0) = 1/4, ℙ(𝑆 = 1) = 1/2,
ℙ(𝑆 = 2) = 1/4. ℙ(та же сумма) = (1/4)2 + (1/2)2 + (1/4)2 = 6/16 = 3/8.

b. Для неразличимых (бозонных)монет пространство элементарныхисходов— этомножество исхо‐
дов {{0, 0}, {0, 1}, {1, 1}}. Предполагая, что они равновероятны, каждый имеет вероятность 1/3.
Вероятности для сумм: ℙ(𝑆 = 0) = 1/3, ℙ(𝑆 = 1) = 1/3, ℙ(𝑆 = 2) = 1/3. ℙ(та же сумма) =
(1/3)2 + (1/3)2 + (1/3)2 = 3/9 = 1/3.

Задача 2, Сложность 1

Вместе с другими студентами вы сдаете экзамен. Число студентов равно числу билетов и составляет 𝑛. Из‐
вестно, что среди билетов имеется 1 ≤ 𝑘 ≤ 𝑛 простых. Студенты заходят в аудиторию по очереди, тянут
билет и оставляют его себе. Когда вам выгоднее всего зайти, чтобымаксимизировать вероятность вытянуть
простой билет?Чтобыразобраться в этомживотрепещущемвопросе, вычислите вероятность вытянутьпро‐
стой билет, если вы заходите

a. первым;
b. 𝑗‐ым, 1 ≤ 𝑗 ≤ 𝑛.

Решение

По симметрии (инвариантность вероятности каждой последовательности простых/сложных задач от‐
носительно перестановок), вероятность не зависит от позиции.

a. Для первого студента вероятность очевидно равна 𝑘/𝑛.
b. Любой из 𝑛 билетов равновероятно может оказаться на 𝑗‐й позиции. Поскольку 𝑘 из них простые,
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вероятность равна 𝑘/𝑛. Время входа не имеет значения.

Задача 3, Сложность 3

Рассматривается случайное размещение 𝑛 неразличимых (бозонных) частиц по 𝑀 различимым ячейкам.
Вычислите вероятность𝑄𝑘(𝑛; 𝑀) того, что в фиксированной ячейке содержится 𝑘 частиц.
Найдите предел𝑄𝑘(𝑛; 𝑀), когда 𝑛, 𝑀 → ∞ таким образом, что 𝑛/𝑀 → 𝜆, где 𝜆 > 0 фиксировано.
Примечание: Такое распределение называется “статистикой Бозе‐Эйнштейна”; оно описывает распределение
бозонов по уровням энергии и дает физическое обоснование модели, в которой неразличимые предметы размеща‐
ются в различимых контейнерах.

Решение

Общее число конфигураций равно (𝑛+𝑀−1
𝑛 ). Если мы зафиксируем, что в одной ячейке находится 𝑘

частиц, мы должны распределить оставшиеся 𝑛 − 𝑘 частиц по остальным𝑀 − 1 ячейкам. Количество
способов это сделать равно ((𝑛−𝑘)+(𝑀−1)−1

𝑛−𝑘 ) = (𝑛−𝑘+𝑀−2
𝑛−𝑘 ).

𝑄𝑘(𝑛; 𝑀) = (𝑛−𝑘+𝑀−2
𝑛−𝑘 )

(𝑛+𝑀−1
𝑛 )

В пределе эта вероятность сходится к геометрическому распределению с параметром 𝑝 = 𝜆
𝜆+1 .

lim
𝑛,𝑀→∞

𝑄𝑘(𝑛; 𝑀) = (1 − 𝑝)𝑝𝑘 = 1
𝜆 + 1 ( 𝜆

𝜆 + 1)
𝑘

Задача 4, Сложность 2

Имеется код длины 𝑛, состоящий из цифр от 0 до 9. Найти вероятность того, что цифры расположены в
неубывающем порядке.

Решение

Общее число кодов равно 10𝑛. Неубывающая последовательность определяется мультимножеством её
цифр. Число таких мультимножеств размера 𝑛 из 10 цифр равно (𝑛+10−1

𝑛 ) = (𝑛+9
𝑛 ).

ℙ(неубывающая) = (𝑛+9
𝑛 )

10𝑛

Задача 5, Сложность 1

Из колоды (52 карты) вынимают 4 карты.
a. Какова вероятность, что все 4 карты — пики?
b. Какова вероятность, что 3 карты — пики, а одна — черви?
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Решение

Напомним, что французская (покерная) колода из 52 карт состоит из 4 мастей, каждая из которых на‐
считывает 13 номиналов (или значений).

a. Существует (52
4 ) способоввыбрать 4картыиз 52. Существует (13

4 ) способоввыбратьпиковыекарты.
Таким образом, вероятность равна (13

4 )
(52

4 ) = 13!48!
52!9! = 13⋅12⋅11⋅10

52⋅51⋅50⋅49 ≈ 0.0026.

b. Существует (13
3 )(13

1 ) способов выбрать 3 пиковые карты и одну червовую карту. Таким образом,

ответ (13
3 )(13

1 )
(52

4 ) ≈ 0.0137.

Задача 6, Сложность 3

Имеется три пронумерованных ящика (1,2,3), по ним случайным образом разложены 10 неразличимых (бо‐
зонных) белыхшаров и 4 пронумерованных красныхшара (1,2,3,4). Найдите вероятность того, что в каждом
ящике есть хотя бы один белый шар и хотя бы один красный шар с номером, большим номера ящика.

Решение

Размещения белых и красных шаров независимы.

• Белые шары: Общее число способов разместить 10 неразличимых шаров в 3 ящика равно
(10+3−1

10 ) = 66. Число способов, при которых в каждом ящике есть хотя бы один шар, равно
(10−1

3−1 ) = (9
2) = 36. Таким образом, 𝑝𝑊 = 36/66 = 6/11.

• Красные шары: Общее число способов разместить 4 различимых шара равно 34 = 81. Условие
требует, чтобышар𝑅2 был в ящике 1,𝑅3 —в ящике 2, а𝑅4 —в ящике 3.Шар𝑅1 может находиться
в любом из 3 ящиков. Это дает 3 благоприятных размещения. Таким образом, 𝑝𝑅 = 3/81 = 1/27.

В силу независимости искомая вероятность равна 𝑝𝑊 𝑝𝑅 = 6
11 × 1

27 = 2
99 .

Задача 7, Сложность 3

Имеется три ящика, в них случайным образом лежат три черных и три белых шара. Найдите вероятность
того, что в первом ящике лежит не менее двух черных шаров, а в третьем — не более одного белого, если

a. шары пронумерованы
b. шары отличаются только цветом (бозонные).

Решение

Пусть A — событие для черных шаров, а B — для белых. События независимы.

a. Пронумерованныешары: Общее число способов для каждого цвета — 33 = 27.
• ℙ(𝐴): Благоприятные способы для𝐵1 ≥ 2: (3

2) ⋅ 21 + (3
3) ⋅ 20 = 7. Так что ℙ(𝐴) = 7/27.

• ℙ(𝐵): Благоприятные способы для𝑊3 ≤ 1: 23 + (3
1) ⋅ 22 = 20. Так что ℙ(𝐵) = 20/27.

• ℙ(𝐴 ∩ 𝐵) = ℙ(𝐴)ℙ(𝐵) = 7
27

20
27 = 140

729 .
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b. Бозонныешары: Общее число способов для каждого цвета — (3+3−1
3 ) = 10.

• ℙ(𝐴): Конфигурации (𝑏1, 𝑏2, 𝑏3) для 𝑏1 ≥ 2: (2, 1, 0), (2, 0, 1), (3, 0, 0). 3 благоприятных спосо‐
ба. ℙ(𝐴) = 3/10.

• ℙ(𝐵): Конфигурации для𝑤3 ≤ 1: (4 с𝑤3 = 0) + (3 с𝑤3 = 1) = 7 способов. ℙ(𝐵) = 7/10.
• ℙ(𝐴 ∩ 𝐵) = ℙ(𝐴)ℙ(𝐵) = 3

10
7

10 = 21
100 .

Задача 8, Сложность 2

Имеется ящик с 30 различимымишарами, среди которых 10 красных и 20 черныхшаров. Наугад вынимают
12 (без учета порядка и без возвращения). Найдите вероятность того, что среди вынутых шаров оказалось
поровну красных и черных. Что изменится, если учитывать порядок?

Решение

Нам нужна вероятность вытянуть 6 красных и 6 черных шаров.

• Без учета порядка: Вероятность дается мультивариантным гипергеометрическим распределе‐

нием ℙ(6К, 6Ч) = (10
6 )(20

6 )
(30

12)
≈ 0.0941.

• С учетом порядка: Ничего не меняется. Просто добавились 12 долларов в числителе и знамена‐
теле.

Задача 9, Сложность 3

Так работает (одномерная) линия передачи сотовой сети. 𝑛 антенн выстроены в линию на равном расстоя‐
нии, каждая повторяет сигнал, полученный от соседней антенны. Сигнал может преодолевать расстояние
двух антенн, поэтому передача работает, если нет двух последовательных неисправных антенн. Предполо‐
жим, что 𝑚 < 𝑛 антенн неисправны, но мы не знаем их положения. Какова вероятность того, что транс‐
миссия сработает?

• IIXIIIXI = работает
• IIXXIIII = не работает

Решение

Обозначим ‘I’ для работающей антенны и ‘X’ для неисправной. Чтобы определить конфигурацию
работающих‐неработающих антенн, достаточно указать положение𝑚 ‘X’ из 𝑛 возможных позиций. Та‐
ким образом, у нас есть (𝑛

𝑚) равновероятных возможностей.
Сколько из них не имеют двух последовательных ‘X’? Чтобы посчитать, нарисуем следующую картину:

_ I _ I _ I… _ I _

где имеется (𝑛 − 𝑚) ‘I’. Чтобы создать рабочую конфигурацию, мы можем разместить𝑚 неисправных
антенн в любое из 𝑛−𝑚+1 свободныхмест, отмеченных ‘_’. Таким образом, вероятность работающей
сети равна

(𝑛−𝑚+1
𝑚 )

(𝑛
𝑚)

что, конечно, означает 0 при 2𝑚 > 𝑛 + 1.

4



Задача 10, Сложность 3

Человек многократно подбрасывает монету. Он останавливается, как только получает последовательность
из 𝑛 орлов или последовательность из 1 решки и (𝑛 − 1) орлов подряд.
a. Какова вероятность, что он остановится?
b. Какова вероятность, что он остановится на последовательности из n орлов?

Решение

Человек остановится с вероятностью 1.
Существует только один способ увидеть последовательность из 𝑛 орлов подряд до появления последо‐
вательности из 1 решки и (𝑛 − 1) орлов: эта последовательность должна появиться с самого начала.
Таким образом, искомая вероятность равна 2−𝑛. В общем случае, для двух заданных последовательно‐
стей орлов и решек (или 0 и 1), трудно точно вычислить вероятность того, что одна появится раньше
другой. Очевидно, что это зависит не только от длины последовательности, что и показывает данная
задача.

Задача 11, Сложность 4

Электричка состоитиз𝑛 вагонов. Каждыйиз 𝑘 пассажиров выбирает вагоннаудачу. Какова вероятность, что
в каждом вагоне будет хотя бы один пассажир? Какова вероятность, что будут заняты ровно 𝑟 вагонов?

Решение

Если𝐸 — это множество пассажиров, а𝐹 —множество вагонов, задача сводится к вычислениюнекото‐
рых комбинаторных свойств функций 𝑓 ∶ 𝐸 → 𝐹 (распределений пассажиров по вагонам). Поскольку
|𝐸| = 𝑘 и |𝐹 | = 𝑛, существует 𝑛𝑘 всего функций 𝑓 ∶ 𝐸 → 𝐹 .

a. Здесь нам нужно посчитать, сколько существует сюръективных функций 𝑓 ∶ 𝐸 → 𝐹 . Предполо‐
жим, 𝑘 ≥ 𝑛 (иначе ответ 0). Для𝐴 ⊂ 𝐹 определим

Число функций с образом в𝐴 = |𝐴|𝑘

По принципу включений‐исключений, число функций, имеющих в качестве образа ровно𝐹 , рав‐
но:

Число сюръективных функций =
𝑛

∑
𝑗=0

(−1)𝑛−𝑗(𝑛
𝑗)𝑗𝑘

Чтобы найти вероятность, просто разделите на 𝑛𝑘.

b. Нам нужно посчитать, сколько функций имеют образ мощностью 𝑟. Сначала мы выбираем 𝑟 ва‐
гонов, которые будут заняты, (𝑛

𝑟) способами. Затем мы считаем количество сюръективных функ‐
ций от 𝑘 пассажиров к этим 𝑟 вагонам. Из предыдущего пункта это∑𝑟

𝑗=0(−1)𝑟−𝑗(𝑟
𝑗)𝑗𝑘. Общее чис‐

ло способов равно:

(𝑛
𝑟)

𝑟
∑
𝑗=0

(−1)𝑟−𝑗(𝑟
𝑗)𝑗𝑘

Разделите на 𝑛𝑘, чтобы получить вероятность.
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Задача 12, Сложность 4

Пассажиры в автобусе рассаживаются случайным образом, не обращая внимания на места, указанные в
билете. Число пассажиров равно числу мест. Какова вероятность, что ни один не сядет на свое место?

Решение

Пусть 𝑛 — число пассажиров и мест. Общее число перестановок равно 𝑛!. Мы хотим посчитать пере‐
становки без неподвижных точек (беспорядки). Пусть𝐴𝑖 — это множество перестановок, где пассажир
𝑖 сидит на своем месте. Мы хотим найти 𝑛! − | ∪𝑛

𝑖=1 𝐴𝑖|. По принципу включений‐исключений:

| ∪𝑛
𝑖=1 𝐴𝑖| = ∑

𝑖
|𝐴𝑖| − ∑

𝑖<𝑗
|𝐴𝑖 ∩ 𝐴𝑗| + ⋯ + (−1)𝑛−1|𝐴1 ∩ ⋯ ∩ 𝐴𝑛|

Размер пересечения 𝑘 таких множеств — это число перестановок, где 𝑘 конкретных пассажиров нахо‐
дятся на своих местах, что равно (𝑛 − 𝑘)!. Существует (𝑛

𝑘) таких пересечений.

| ∪𝑛
𝑖=1 𝐴𝑖| =

𝑛
∑
𝑘=1

(−1)𝑘−1(𝑛
𝑘)(𝑛 − 𝑘)! =

𝑛
∑
𝑘=1

(−1)𝑘−1 𝑛!
𝑘!

Число беспорядков равно 𝐷𝑛 = 𝑛! − | ∪𝑛
𝑖=1 𝐴𝑖| = 𝑛! − ∑𝑛

𝑘=1(−1)𝑘−1 𝑛!
𝑘! = 𝑛! ∑𝑛

𝑘=0
(−1)𝑘

𝑘! . Вероятность
равна:

ℙ(никто не на своем месте) = 𝐷𝑛
𝑛! =

𝑛
∑
𝑘=0

(−1)𝑘

𝑘!
При 𝑛 → ∞ эта вероятность сходится к 𝑒−1.

Задача 13, Сложность 3

Человек одновременно купил две коробки спичек и положил их в карман. После этого каждый раз, когда
ему нужно было зажечь спичку, он доставал наудачу ту или иную коробку. Через некоторое время, вытащив
одну из коробок, человек обнаружил, что она пуста. Какова вероятность, что в другой коробке в этотмомент
находилось 𝑘 спичек, если число спичек в новой коробке равно 𝑛?

Решение

Для определенности, скажем, что вначале в каждом кармане было по𝑛 спичек. Вычислим вероятность
того, что человек обнаружит правый карман пустым, и в этот момент в левом кармане будет 𝑘 спичек.
Чтобы это произошло, он должен был выбрать правый карман 𝑛 раз из 𝑛 + (𝑛 − 𝑘) = 2𝑛 − 𝑘 попыток,
а затем он должен снова выбрать правый карман на (2𝑛 − 𝑘 + 1)‐й попытке. Число таких последова‐
тельностей выборов равно (2𝑛−𝑘

𝑛 ). Каждая такая последовательность имеет вероятность (1/2)2𝑛−𝑘+1.
Таким образом, эта вероятность равна (2𝑛−𝑘

𝑛 )(1
2)2𝑛−𝑘+1. Искомая вероятность вдвое больше, так как

первым может опустеть и левый карман, следовательно, она равна (2𝑛−𝑘
𝑛 )2−(2𝑛−𝑘).
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Задача 14, Сложность 3

По схеме случайного выбора с возвращением из множества натуральных чисел {1, … , 𝑁}, 𝑁 ≥ 2, выбира‐
ются числа 𝜉 и 𝜂. Покажите, что

ℙ (𝜉2 − 𝜂2 кратно 2) < ℙ (𝜉2 − 𝜂2 кратно 3)

Решение

Пусть 𝑅𝑘 — количество пар (𝑖, 𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , таких что 𝑖2 ≡ 𝑗2 (mod 𝑘). Нам нужно доказать, что
𝑅2 < 𝑅3, поскольку вероятности получаются делением обеих сторон на𝑁2.

• Делимость на 2: 𝑖2 − 𝑗2 = (𝑖 − 𝑗)(𝑖 + 𝑗) делится на 2 тогда и только тогда, когда 𝑖 и 𝑗 имеют
одинаковую четность. Таким образом,𝑅2 = ⌊𝑁/2⌋2 + ⌈𝑁/2⌉2.

• Делимость на 3: Для целого числа 𝑧, 𝑧2 (mod 3) может быть либо 0, либо 1. Следовательно, 3 де‐
лит 𝜉2 −𝜂2 тогда и только тогда, когда 𝜉 и 𝜂 либо оба делятся на 3, либо оба не делятся на 3. Таким
образом,𝑅3 = ⌊𝑁/3⌋2 + (𝑁 − ⌊𝑁/3⌋)2.

• Для больших 𝑁 , 𝑅2 ≈ 𝑁2/2 и 𝑅3 ≈ 5𝑁2/9. Так как 5/9 > 1/2, неравенство очевидно выпол‐
няется для достаточно больших 𝑁 . С помощью элементарного анализа можно показать, что оно
выполняется для𝑁 ≥ 2.

Задача 15, Сложность 4

По схеме случайного выбора с возвращением из множества натуральных чисел {1, … , 𝑁}, 𝑁 ≥ 3, выбира‐
ются числа 𝜉 и 𝜂. Что больше, ℙ (𝜉3 + 𝜂3 кратно 3) или ℙ (𝜉3 + 𝜂3 кратно 7)?

Решение

Пусть 𝑆𝑘 ∶= 𝑁2ℙ(𝜉3 + 𝜂3 ≡ 0 (mod 𝑘)) — количество пар (𝑖, 𝑗) таких, что 𝑖3 + 𝑗3 ≡ 0 (mod 𝑘), где
1 ≤ 𝑖, 𝑗 ≤ 𝑁 .
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• Делимость на 3: Кубические вычеты 𝑥3 по модулю 3: (03, 13, 23) ≡ (0, 1, 2) (mod 3) (что является
следствием Малой теоремы Ферма 𝑥𝑝 ≡ 𝑥 (mod 𝑝)). Таким образом, 𝜉3 + 𝜂3 ≡ 𝜉 + 𝜂 (mod 3)
равно 0 (mod 3) тогда и только тогда, когда: либо 𝜉 и 𝜂 оба делятся на 3, либо одно имеет остаток
1, а другое 2. Следовательно,

𝑆3 = ⌊𝑁/3⌋2 + 2⌈𝑁/3⌉ ⋅ ⌊(𝑁 − 1)/3 + 1⌋

• Делимость на 7: Кубические вычеты по модулю 7: (03, 13, … , 63) ≡ (0, 1, 1, 6, 1, 6, 6) (mod 7). Зна‐
чит, 𝜉3 + 𝜂3 ≡ 0 (mod 7) тогда и только тогда, когда либо 𝜉 и 𝜂 оба делятся на 7, либо одно име‐
ет остаток 1 (в кубе), а другое 6. Пусть 𝑁𝑖 ‐ количество чисел в {1, ..., 𝑁}, чей куб дает остаток 𝑖
(mod 7). Тогда 𝑆7 = 𝑁2

0 + 2𝑁1𝑁6.
• Для больших 𝑁 , 𝑆3 ≈ 𝑁2/3, а 𝑆7 ≈ 𝑁2((1/7)2 + 2(3/7)(3/7)) = 19𝑁2/49. Так как 19/49 > 1/3,
неравенство выполняется для достаточно больших𝑁 . С помощью элементарного анализа можно
показать, что ℙ (𝜉3 + 𝜂3 кратно 7) больше для𝑁 ≥ 3.

Задача 16, Сложность 5

Случайные числа 𝜉 и 𝜂 выбираются независимо и равномерно в диапазоне {1, … , 𝑁}. Найдите вероятность
𝑞𝑁 того, что 𝜉 и 𝜂 взаимно просты. Найдите lim𝑁→∞ 𝑞𝑁 , интерпретируемую как вероятность того, что два
числа взаимно просты.
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Решение

Пусть 𝑞𝑁 = ℙ𝑁(НОД(𝜉, 𝜂) = 1).𝐴𝑝 — событие “𝑝 делит 𝜉”,𝐵𝑝 — событие “𝑝 делит 𝜂”. Тогда

𝑞𝑁 = ℙ𝑁 ( ⋂
𝑝 простое

(𝐴𝑝 ∩ 𝐵𝑝)𝑐)

При больших 𝑁 можно неформально предположить, что события (𝐴𝑝 ∩ 𝐵𝑝) и (𝐴𝑝′ ∩ 𝐵𝑝′) становятся
ℙ𝑁 ‐независимыми, а 𝐴𝑝 и 𝐵𝑝 независимы (в точности) для каждого 𝑁 . Тогда предыдущая формула
дает

𝑞𝑁 ≃ ∏
𝑝 простое

ℙ𝑁 ((𝐴𝑝 ∩ 𝐵𝑝)𝑐) = ∏
𝑝 простое

(1 − ℙ𝑁(𝐴𝑝)2)

≃ ∏
𝑝 простое

(1 − 1/𝑝2) = ( ∏
𝑝 простое

1
1 − 𝑝−2 )

−1

= (∑
𝑛≥1

1
𝑛2 )

−1

= 6
𝜋2 ≃ 0.6079

Чтобы сделать этот аргумент строгим, определим 𝐸𝑁 ∶= {1 ≤ 𝑚, 𝑛 ≤ 𝑁 ∶ НОД(𝑚, 𝑛) = 1}, 𝑆(𝑁) ∶=
|𝐸𝑁 |. Тогда 𝑞𝑁 = 𝑆(𝑁)/𝑁2. Однако

𝑆(𝑁) ∶= ∑
1≤𝑚,𝑛≤𝑁∶НОД(𝑚,𝑛)=1

1 = ∑
𝑑≤𝑁

𝜇(𝑑) ⌊𝑁
𝑑 ⌋

2

где функция Мёбиуса 𝜇(𝑑) удовлетворяет

∑
𝑑

𝜇(𝑑)𝑑−𝑠 = 1/𝜁(𝑠)

Поэтому мы определяем 𝜀𝑁 ∶= 𝑞𝑁 − 6/𝜋2 и хотим показать, что 𝜀𝑁 → 0. Действительно, из приведен‐
ного выше обсуждения

𝜀𝑁 = ∑
𝑑≤𝑁

𝜇(𝑑) 1
𝑁2 ⌊𝑁

𝑑 ⌋
2

− ∑
𝑑

𝜇(𝑑)𝑑−2
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которое очевидно стремится к нулю при 𝑁 → ∞. Можно доказать, что для достаточно больших 𝑁 ≥
𝑁0 и некоторых констант 𝑐± > 0

𝑐−

√
log log𝑁

𝑁 ≤ 𝜀𝑁 ≤ 𝑐+

√
log log𝑁

𝑁

Дополнительные Задачи

Задача 17, Сложность 2

200 студентов, изучающих теорию вероятностей, делятся на три группы по 50, 50 и 100 человек для посе‐
щения семинаров в аудиториях соответствующей вместимости.

a. Сколькими способами можно сформировать эти группы студентов?

Александра и Светлана — хорошие подруги и хотели бы оказаться в одной аудитории во время семинара.
Но они терпеть не могут Алексея и надеются, что его распределят в другую аудиторию.

b. Какова вероятность, что их желания исполнятся?

Решение

Это простое упражнение напоминает, что иногда существует несколько различных естественных ве‐
роятностных пространств, в которых можно проводить вычисления.

a. Существует ( 200
50,50,100) способов распределить студентов по трем аудиториям. Однако, если мы

рассматриваем способы разделения студентов на две группы по 50 человек и одну группу из 100,
то у нас есть ( 200

50,50,100)/2! вариантов.

b. Существует 2( 197
48,50,99) способов разместить студентов так, чтобы Александра и Светлана были в

одной из 50‐местных аудиторий, а Алексей — в 100‐местной и т.д. Таким образом, искомая веро‐
ятность равна

2( 197
48,49,100) + 2( 197

48,50,99) + 2( 197
49,50,98)

( 200
50,50,100)

≃ 0.219

Заметим, что мы могли бы эквивалентно рассуждать, распределяя студентов по группам (не раз‐
личая две группы по 50), что дало бы нам (что, конечно же, то же самое)

( 197
48,49,100) + ( 197

48,50,99) + ( 197
49,50,98)

( 200
50,50,100)/2!

Задача 18, Сложность 5

В урне находятся 𝑢1 шаров цвета 1, 𝑢2 шаров цвета 2, …, 𝑢𝑅 шаров цвета 𝑅. Мы производим 𝑛 случайных
извлечений, и сразу после каждого извлечения шар возвращается в урну вместе с 𝑚 другими шарами того
же цвета (𝑚 ≥ −1 и 𝑛 ≤ 𝑢1 + … + 𝑢𝑅, если𝑚 = −1).
a. Какова вероятность того, что на 𝑖‐м извлечении будет вытянут шар цвета 𝑟?
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b. Какова вероятность того, что среди 𝑛 выбранных шаров цвет 1 встретится 𝑗1 раз, цвет 2 — 𝑗2 раз, …,
цвет𝑅 — 𝑗𝑅 раз?

c. Пусть 𝑢1 = 𝑢2 = … = 𝑢𝑅 = 𝑢. Вычислите предыдущую вероятность в следующих случаях: 𝑚 = −1
(извлечение без возвращения);𝑚 = 0 (извлечение с возвращением).

Решение

a. Вероятность вытянуть шар цвета 𝑟 на любом конкретном извлечении 𝑖 равна 𝑢𝑟/𝑈 , где 𝑈 =
∑𝑟 𝑢𝑟. Действительно, вероятность любойпоследовательностицветовне зависит отпорядкацве‐
тов в ней.

b. Для конкретной последовательности извлечений с количествомшаров 𝑗1, … , 𝑗𝑅 вероятность рав‐
на:

𝑃(последовательность) = ∏𝑅
𝑟=1 ∏𝑗𝑟−1

𝑖=0 (𝑢𝑟 + 𝑖𝑚)
∏𝑛−1

𝑖=0 (𝑈 + 𝑖𝑚)
Поскольку любая последовательность с тем же составом цветов имеет ту же вероятность, общая
вероятность равна этому значению, умноженному на количество таких последовательностей,
( 𝑛

𝑗1,…,𝑗𝑅
):

𝑃(𝑗1, … , 𝑗𝑅) = ( 𝑛
𝑗1, … , 𝑗𝑅

)∏𝑅
𝑟=1 ∏𝑗𝑟−1

𝑖=0 (𝑢𝑟 + 𝑖𝑚)
∏𝑛−1

𝑖=0 (𝑈 + 𝑖𝑚)

c. Пусть 𝑢𝑟 = 𝑢 для всех 𝑟. Тогда 𝑈 = 𝑅𝑢.
• 𝑚 = 0 (извлечение с возвращением):Получается мультиномиальное распределение.

𝑃(𝑗1, … , 𝑗𝑅) = ( 𝑛
𝑗1, … , 𝑗𝑅

)∏𝑅
𝑟=1 𝑢𝑗𝑟

(𝑅𝑢)𝑛 = ( 𝑛
𝑗1, … , 𝑗𝑅

) 𝑢𝑛

𝑅𝑛𝑢𝑛 = ( 𝑛
𝑗1, … , 𝑗𝑅

)(1/𝑅)𝑛

• 𝑚 = −1 (извлечениебезвозвращения):Получаетсямногомерное гипергеометрическое рас‐
пределение.

𝑃(𝑗1, … , 𝑗𝑅) =
( 𝑢

𝑗1
)( 𝑢

𝑗2
) ⋯ ( 𝑢

𝑗𝑅
)

(𝑅𝑢
𝑛 )
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