
Семинар 2

Задача 1

1. Верно ли равенство ℙ(𝐵|𝐴) + ℙ(𝐶|𝐴) = ℙ(𝐵 ∪ 𝐶|𝐴)?
2. Привести примеры, показывающие, что следующие равенства, вообще говоря, неверны:

a. ℙ(𝐴|𝐵 ∪ 𝐶) = ℙ(𝐴|𝐵) + ℙ(𝐴|𝐶)
b. ℙ(𝐵|𝐴) + ℙ(𝐵|𝐴) = 1

Решение

1. Нет, это неверно. Правильная формула, аналогичная формуле для безусловных вероятностей, та‐
кова:

ℙ(𝐵 ∪ 𝐶|𝐴) = ℙ(𝐵|𝐴) + ℙ(𝐶|𝐴) − ℙ(𝐵 ∩ 𝐶|𝐴)
Равенство будет выполняться только если ℙ(𝐵 ∩ 𝐶|𝐴) = 0, то есть события 𝐵 и 𝐶 несовместны
при условии𝐴.

2. ПустьΩ—множество, содержащее как минимум две точки.

a. Возьмём𝐴 ⊃ 𝐵 ∪ 𝐶, например𝐴 = Ω, с ℙ(𝐵), ℙ(𝐶) > 0.
b. Возьмём𝐵 = Ω и ℙ(𝐴) ∈ (0, 1).

Задача 2

Пусть имеется вероятностное пространство (Ω, ℱ, ℙ) и события 𝐻1, 𝐻2 ∈ ℱ имеют положительные веро‐
ятности. Обозначим ℙ𝐻𝑖

∶= ℙ(⋅|𝐻𝑖), 𝑖 = 1, 2. Докажите, что

ℙ𝐻1
(⋅|𝐻2) = ℙ(⋅|𝐻1 ∩ 𝐻2) = ℙ𝐻2

(⋅|𝐻1).

То есть, для любого𝐴 ∈ ℱ,
ℙ𝐻1

(𝐴|𝐻2) = ℙ(𝐴|𝐻1 ∩ 𝐻2) = ℙ𝐻2
(𝐴|𝐻1).

Решение

Докажем первое равенство. По определению условной вероятности:

ℙ𝐻1
(𝐴|𝐻2) =

ℙ𝐻1
(𝐴 ∩ 𝐻2)

ℙ𝐻1
(𝐻2)
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Теперь раскроем вероятности в числителе и знаменателе, используя определение меры ℙ𝐻1
:

ℙ𝐻1
(𝐴 ∩ 𝐻2) = ℙ(𝐴 ∩ 𝐻2|𝐻1) = ℙ(𝐴 ∩ 𝐻2 ∩ 𝐻1)

ℙ(𝐻1)

ℙ𝐻1
(𝐻2) = ℙ(𝐻2|𝐻1) = ℙ(𝐻2 ∩ 𝐻1)

ℙ(𝐻1)
Подставляя это обратно в исходное выражение, получаем:

ℙ𝐻1
(𝐴|𝐻2) =

ℙ(𝐴∩𝐻1∩𝐻2)
ℙ(𝐻1)

ℙ(𝐻1∩𝐻2)
ℙ(𝐻1)

= ℙ(𝐴 ∩ 𝐻1 ∩ 𝐻2)
ℙ(𝐻1 ∩ 𝐻2)

Это в точности определение ℙ(𝐴|𝐻1 ∩ 𝐻2). Второе равенство ℙ(⋅|𝐻1 ∩ 𝐻2) = ℙ𝐻2
(⋅|𝐻1) доказывается

абсолютно аналогично, просто поменяв ролями𝐻1 и𝐻2.

Задача 3

Колоду из 52 карт раздают на 4 игроков. Один из игрока объявляет, что у него есть туз.
a. Какова вероятность, что у него есть еще хотя бы один туз?
b. Какова вероятность, что у него есть еще хотя бы один туз, если он объявил, что у него есть туз пик?

Сперва решите эту задачу напрямую, не используя понятие условной вероятности (переопределяя множе‐
ство элементарных исходов), а затем по определению условной вероятности.

Решение

Это может быть немного удивительно, потому что почему масть туза должна менять вероятность? Ко‐
нечно, должна, потому что иметь туза пик не так просто, как иметь любого туза, и это сильнее корре‐
лирует с наличием любого другого туза. Давайте посчитаем это количественно.

a. Пусть𝐴≥1 — событие, что у игрока есть хотя бы один туз, а𝐴≥2 — что у него хотя бы два туза. Мы
ищем ℙ(𝐴≥2|𝐴≥1). Давайте посчитаем:

• Число возможных 13‐карточных рук: |Ω| = (52
13).

• Число рук без тузов: (48
13).

• Число рук с хотя бы одним тузом: (52
13) − (48

13).
• Число рук с ровно одним тузом: (4

1)(48
12).

• Числорук с хотя быдвумя тузами: ((52
13)−(48

13))−(4
1)(48

12). Такимобразом, искомая вероятность:

ℙ(𝐴≥2|𝐴≥1) = ℙ(𝐴≥2)
ℙ(𝐴≥1) = (52

13) − (48
13) − (4

1)(48
12)

(52
13) − (48

13)
≈ 0.37

b. Пусть𝐴𝑆 —событие, что у игрока есть туз пик.Мыищемℙ(𝐴≥2|𝐴𝑆). Новое пространство элемен‐
тарных исходов — это все руки, содержащие туз пик. Их число равно (51

12). Среди этих рук те, что
не содержат других тузов (т.е. содержат ровно одного туза — пикового), состоят из туза пик и 12
карт из 48 не‐тузов. Их число (48

12). Число рук, содержащих туз пик и хотя бы еще один туз, равно
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(51
12) − (48

12). Поэтому

ℙ(𝐴≥2|𝐴𝑆) = (51
12) − (48

12)
(51

12)
= 1 − (48

12)
(51

12)
= 1 − 48! ⋅ 39!

51! ⋅ 36! = 1 − 39 ⋅ 38 ⋅ 37
51 ⋅ 50 ⋅ 49 ≈ 0.56

Это значение заметно больше, чем в пункте (a).

Задача 4

Из множества {1, 2, ..., 𝑛} без возвращения по очереди выбирают три различных числа. Найдите условную
вероятность того, что третье число лежит между первым и вторым, при условии, что первое число меньше
второго.

Решение

Пусть выбранные числа это 𝑥, 𝑦, 𝑧. Они различны. Рассмотрим любые три различных числа 𝑎, 𝑏, 𝑐 из
множества. Существует 3! = 6 равновероятных способов упорядочить их при выборе. Пусть 𝐴 — со‐
бытие, что первое число меньше второго (𝑥 < 𝑦). Пусть 𝐵 — событие, что третье число лежит между
первым и вторым (𝑥 < 𝑧 < 𝑦 или 𝑦 < 𝑧 < 𝑥). Мы ищем ℙ(𝐵|𝐴).
По симметрии, для любой пары различных чисел (𝑥, 𝑦) равновероятно, что 𝑥 < 𝑦 или 𝑦 < 𝑥. Поэтому
ℙ(𝐴) = 1/2.
Событие 𝐴 ∩ 𝐵 означает, что 𝑥 < 𝑧 < 𝑦. Из 6 возможных перестановок трех чисел 𝑎, 𝑏, 𝑐, только одна
удовлетворяет этому условию. Следовательно, ℙ(𝐴 ∩ 𝐵) = 1/6.
Тогда условная вероятность равна:

ℙ(𝐵|𝐴) = ℙ(𝐴 ∩ 𝐵)
ℙ(𝐴) = 1/6

1/2 = 1/3.

Задача 5

(а) В мешке лежали один шар белого и один шар чёрного цвета. Из него извлекли один шар и положили
в пустой ящик. Также в ящик положили ещё один белый шар. Наконец, из ящика извлекли один шар, он
оказался белым. Какова вероятность того, что оставшийся в~ящике шар тоже белый?

(б) Решите предыдущую задачу в предположении, что исходно в мешке было 10 черных и 7 белых шаров.

Решение

a. Пусть𝑊1 —событие, что из мешка был извлечен белыйшар (первое извлечение), а𝑊2 —событие,
что затем из ящика был извлечен белый шар (второе извлечение). Мы интерпретируем задачу
следующим образом:

• ℙ(𝑊1) = ℙ(𝑊 𝑐
1 ) = 1/2, так как в мешке один белый и один черный шар.

• ℙ(𝑊2 ∣ 𝑊1) = 1, так как если мы вынули белый шар из мешка, в ящике перед вторым извлечени‐
ем будет два белых шара.

• ℙ(𝑊2 ∣ 𝑊 𝑐
1 ) = 1/2, так как если мы вынули черный шар из мешка, в ящике будет один белый и

один черный шар.
• Мы хотим найтиℙ(𝑊1 ∣ 𝑊2). Действительно, оставшийся в ящикешар будет белым тогда и толь‐
ко тогда, когда при первом извлечении был вынут белый шар.
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С этими обозначениями задача легко решается по формуле Байеса:

ℙ(𝑊1|𝑊2) = ℙ(𝑊2 ∣ 𝑊1)ℙ(𝑊1)
ℙ(𝑊2) = ℙ(𝑊2 ∣ 𝑊1)ℙ(𝑊1)

ℙ(𝑊2|𝑊1)ℙ(𝑊1) + ℙ(𝑊2|𝑊 𝑐
1 )ℙ(𝑊 𝑐

1 ) = 1 ⋅ 1
2

1 ⋅ 1
2 + 1

2 ⋅ 1
2

= 2
3

b. Теперь в мешке 10 черных и 7 белых шаров. Единственное изменение в том, что ℙ(𝑊1) = 7/17 и,
следовательно, ℙ(𝑊 𝑐

1 ) = 10/17, что дает в ответе 7
12 .

Задача 6

(Урновая схема Пойа) В урне находятся 𝑎 белых и 𝑏 черных шаров. Выполняем 𝑛 случайных извлечений и
сразупосле каждогоизвлеченияшар возвращается в урну вместе с𝑚другихшарамитогожецвета. (𝑚 ≥ −1
и 𝑛 ≤ 𝑎 + 𝑏 если𝑚 = −1).
a) Какова вероятность, что из 𝑛 = 𝑛1 + 𝑛2 выбранных шаров белых шаров будет 𝑛1, а черных 𝑛2?
b) Докажите, что вероятность извлечь на 𝑖‐м шаге белый шар равна 𝑎/(𝑎 + 𝑏).

Решение

a. Вероятность любой конкретной последовательности извлечений, содержащей 𝑛1 белых и 𝑛2 чер‐
ных шаров, равна:

(𝑎(𝑎 + 𝑚) … (𝑎 + (𝑛1 − 1)𝑚)) ⋅ (𝑏(𝑏 + 𝑚) … (𝑏 + (𝑛2 − 1)𝑚))
(𝑎 + 𝑏)(𝑎 + 𝑏 + 𝑚) … (𝑎 + 𝑏 + (𝑛 − 1)𝑚)

Число таких последовательностей равно мультиномиальному коэффициенту ( 𝑛
𝑛1,𝑛2

) = ( 𝑛
𝑛1

). Ито‐
говая вероятность:

ℙ(𝑛1 белых, 𝑛2 черных) = ( 𝑛
𝑛1

)
∏𝑛1−1

𝑖=0 (𝑎 + 𝑖𝑚) ∏𝑛2−1
𝑗=0 (𝑏 + 𝑗𝑚)

∏𝑛−1
𝑘=0(𝑎 + 𝑏 + 𝑘𝑚)

b. Поскольку вероятность последовательностей извлечений белых и черныхшаров инвариантна от‐
носительно перестановок, вероятность извлечь белый шар на каждом шаге одинакова, а именно
𝑎/(𝑎 + 𝑏), как и при первом извлечении.

Задача 7

(ПарадоксМонти Холла). Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из
трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете
одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где
козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он
спрашивает вас — не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши
шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор? Уточнения:
автомобиль равновероятно размещён за любой из трёх дверей; ведущий знает, где находится автомобиль;
вне зависимости от того какую вы выбрали дверь, ведущий в любом случае обязан открыть дверь с козой (но
нету, которуювывыбрали)ипредложитьизменитьвыбор; еслиуведущего есть выбор, какуюиздвухдверей
открыть (то есть, вы указали на верную дверь, и за обеими оставшимися дверями — козы), он выбирает
любую из них с одинаковой вероятностью.
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Решение

Да, шансы увеличатся. Действительно, если вы не меняете выбор, вы выигрываете тогда и только то‐
гда, когда ваш первоначальный выбор был верным, а именно с вероятностью 1/3. Если вы меняете
выбор, вы выигрываете тогда и только тогда, когда первоначальный выбор был неверным, а именно с
вероятностью 2/3.

Задача 8

Ковид снова в моде! Но и британские учёные не спят: разработан новый тест, имеющий чувствительность
99% (т.е. верно диагностирует больного в 99% случаев) и специфичность 99% (лишь 1% здоровых людей
объявляет больными). Известно, что в одной счастливой деревне ковидом страдает 1 человек из ее 1000
жителей. Какова вероятность того, что житель этой деревни, объявленный больным по результатам теста,
действительно болен?

Решение

Пусть𝐷 — событие, что человек болен, а 𝑇 — событие, что тест положителен. Нам дано:

• ℙ(𝐷) = 1/1000 = 0.001 (априорная вероятность болезни).
• ℙ(𝑇 |𝐷) = 0.99 (чувствительность).
• ℙ(𝑇 |𝐷) = 0.99 (специфичность), следовательно ℙ(𝑇 |𝐷) = 1 − 0.99 = 0.01 (вероятность ложно‐
положительного результата).

Мы хотим найти ℙ(𝐷|𝑇 ), то есть вероятность того, что человек действительно болен при положитель‐
ном результате теста. Используя формулу Байеса:

ℙ(𝐷|𝑇 ) = ℙ(𝑇 |𝐷)ℙ(𝐷)
ℙ(𝑇 |𝐷)ℙ(𝐷) + ℙ(𝑇 |𝐷)ℙ(𝐷) = 0.00099

0.01098 ≈ 0.09016

Таким образом, вероятность того, что человек с положительным тестом действительно болен, состав‐
ляет всего около 9%.

Задача 9

Агент Д. следит за передвижениями директора некоторой компании. Известно, что директор бывает в офи‐
се с вероятностью 60%, а на даче с вероятностью 40%. У агента Д. есть два осведомителя, причем первый
ошибается с вероятностью 20%, а второй ‐ с вероятностью 10%. Первый осведомитель утверждает, что ди‐
ректор компании в офисе, а второй осведомитель утверждает, что он на даче. Где директор?

Решение

Ключевой момент в этой задаче — не математика, а то, как мы интерпретируем частоту ошибок осве‐
домителей. Мы должны понимать, что когда директор находится в офисе (на даче), осведомители со‐
общат, что он на даче (в офисе) независимо с вероятностями 0.2 и 0.1.
Формально, если мы обозначим через𝑂 событие “директор в офисе”, а через 𝐼1 событие “первый осве‐
домитель сообщил, что директор в офисе” и 𝐼2 событие “второй осведомитель сообщил, что директор

5



на даче”, мы предполагаем, что ℙ(𝐼1 ∩ 𝐼2|𝑂) = ℙ(𝐼1|𝑂)ℙ(𝐼2|𝑂) и т.д. Тогда по теореме Байеса:

ℙ(𝑂|𝐼1 ∩ 𝐼2) = ℙ(𝐼1 ∩ 𝐼2|𝑂)ℙ(𝑂)
ℙ(𝐼1 ∩ 𝐼2|𝑂)ℙ(𝑂) + ℙ(𝐼1 ∩ 𝐼2|𝑂)ℙ(𝑂)

Вероятности сообщений при условии местонахождения:

• ℙ(𝐼1|𝑂) = 1 − 0.2 = 0.8
• ℙ(𝐼2|𝑂) = 0.1 (ошибка)
• ℙ(𝐼1|𝑂) = 0.2 (ошибка)
• ℙ(𝐼2|𝑂) = 1 − 0.1 = 0.9

ℙ(𝑂|𝐼1 ∩ 𝐼2) = (0.8 ⋅ 0.1) ⋅ 0.6
(0.8 ⋅ 0.1) ⋅ 0.6 + (0.2 ⋅ 0.9) ⋅ 0.4 = 0.048

0.048 + 0.072 = 0.048
0.120 = 0.4

Апостериорная вероятность того, что директор на даче, равна 1 − 0.4 = 0.6. Следовательно, более
вероятно, что директор находится на даче.

Дополнительные Задачи

Задача 10

Пусть𝑛 ≥ 2. Случайнымобразомвыбираемиз {1, 2, … , 𝑛} одно число. Событие𝐴—выбранное число делит‐
ся на 2, событие𝐵— выбранное число делится на 7. Найдите все 𝑛 такие, что события𝐴 и𝐵 независимы.

Решение

Нам нужно решить
⌊𝑛/14⌋/𝑛 = ℙ(𝐴 ∩ 𝐵) =? ℙ(𝐴)ℙ(𝐵) = ⌊𝑛/2⌋⌊𝑛/7⌋/𝑛2

Запишите 𝑛 = 14 ∗ 𝑘 + 𝑟, с 0 ≤ 𝑟 ≤ 13, чтобы получить

𝑘𝑟 = 2𝑘⌊𝑟/2⌋ + 7𝑘⌊𝑟/7⌋ + ⌊𝑟/7⌋⌊𝑟/2⌋

что выполняется, если 𝑘 = 0 и 𝑛 = 𝑟 ≤ 6, или если 𝑘 ≥ 1 и 𝑟 = 0, 2, 4, 6. Поэтому ответ: 𝑛 = 0, 2, 4, 6
(mod 1)4 или 𝑛 = 3, 5.

Задача 11

Придумайте пример трех событий𝐴,𝐵,𝐶, независимых попарно, но не в совокупности.

Решение

Пустьℤ𝑛 ∶= {0, 1, … , 𝑛−1}представляет𝑛рыцарей, сидящих закруглымстолом.Каждыйрыцарьпьёт
вино или пиво случайным образом с вероятностью 1/2. Пусть 𝐴𝑘 — событие, при котором рыцари 𝑘
и 𝑘 + 1 выпивают один и тот же напиток. Любая подгруппа этих событий независима, пока мы не
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почувствуем, что стол круглый, а именно, если взять все𝐴𝑘, поскольку в этом случае

ℙ(𝐴1 ∩ ⋯ ∩ 𝐴𝑛) = 2 ∗ 2−𝑛 ≠
𝑛

∏
𝑘=1

ℙ(𝐴𝑘) = 2−𝑛
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