Семинар 3

Задача 1

При прохождении одного порога байдарка не получает повреждений с вероятностью p_1 , получает серьезные повреждения с вероятность p_2 , и полностью ломается с вероятностью $p_3=1-p_1-p_2$. Два серьезных повреждения приводят к полной поломке. Найдите вероятность того, что при прохождении n порогов байдарка не будет полностью сломана.

Задача 2

Пусть $n \geq 2$. Случайным образом выбираем из $1, 2, \ldots, n$ одно число. Событие A — выбранное число делится на 2, событие B — выбранное число делится на 7. Найдите все n такие, что события A и B независимы.

Задача З

(геометрическое распределение) Два игрока по очереди подбрасывают кость. Тот, у кого первого выпало 6, — проиграл.

- а. Найдите вероятность произвести за кон ровно n бросаний.
- b. Найдите вероятность того, что первый игрок проиграл.

Задача 4

- а. Пусть событие A не зависит само от себя. Чему равна его вероятность?
- b. Пусть $\mathbb{P}(A)=0$ или $\mathbb{P}(A)=1$. Покажите, что событие A независимо с любым событием B.

Задача 5

Кубик бросают до тех пор, пока впервые не выпадет меньше пяти очков. Какова вероятность получить при последнем броске не меньше двух очков?

Задача 6

Алиса и Боб играют в следующую игру. Бросается правильная монета до тех пор пока не встретится комбинация 110 или 100. Алиса выигрывает, если первой появилась комбинация 110, а Боб в случае, когда первой появилась комбинация 100. Кто будет выигрывать чаще? Какая вероятность побед Алисы и Боба?

Задача 7

Пусть p_n обозначает вероятность того, что за n подбрасываний симметричной монеты ни разу не выпадут три орла подряд. Найдите рекурсию для \$ p_n \$.

Задача 8

События A, B, C попарно независимы и равновероятны, $A \cap B \cap C = \emptyset$. Найти максимально возможное значение $\mathbb{P}(A)$.

Задача 9

Согласно расписанию, автобус и троллейбус ходят каждые 20 минут до полуночи, троллейбус начинает движение в 6:00, а автобус – в 6.15. Найти вероятность уехать троллейбусом, придя на остановку в случайный момент времени днем и выбрав первый подошедший транспорт.

Задача 10

X и Y договорились встретиться в промежуток времени с 12.00 до 13.00, причем каждый из них готов ждать ровно 30 минут. Какова вероятность встречи? Какова вероятность того, что они встретились и X не ждал Y? Какова вероятность, что они пришли одновременно?

Задача 11

Стандартный компьютерный генератор rand выдает случайные числа на интервале от нуля до единицы, далее из каждого извлекают квадратный корень и ответ печатают в формате с фиксированной точкой, используя точность 16 знаков после запятой (то есть например, так: 0.0003267891135015...). Найти вероятность, что в этой записи второй цифрой после десятичной точки будет двойка? Найдите ответ аналитически и сравните с результатом компьютерного эксперимента.

Задача 12

Трое загадывают по числу из отрезка [0,1]. Какова вероятность того, что существует треугольник с такими сторонами?