
Неравенства Белла и границы применимости
вероятностных моделей

Интереснейшими примерами попыток использования традиционной колмогоровской вероятностной мо‐
дели в микромире служат толкования опытаШтерна‐Герлаха по отклонениюпучка частиц в магнитном по‐
ле и опыта Алана Аспекта по интерференции состояний фотонов (опыта, изначально предложенного еще
в 30‐х годах в статье Эйнштейна‐Подольского‐Розена). В 1964 году появился сравнительно несложный ре‐
зультат в теории вероятностей, который показал несовместность традиционных вероятностных моделей
и количественных измерений в этих опытах. Этот результат называется неравенствами Белла для случайных
величин, подробное объяснение связи неравенств с физическими измерениями можно найти в учебнике
Александра Львовского ‘’Отличная квантовая механика’ ’ 2019 года. Ниже изложено доказательство (принад‐
лежащее Аккарди) неравенств Белла для случайных величин.

Примечание. Оригинальное доказательство Белла и почти все опубликованные позже доказательства нера‐
венства Белла используют лишь случайные величины, принимающие только два значения+1 и−1.

Арифметические неравенства

Лемма 0.1. Для любых двух чисел 𝑎, 𝑐 ∈ [−1, 1] справедливы следующие два (вариант для знаков+ и−) неравен‐
ства:

|𝑎 ± 𝑐| ⩽ 1 ± 𝑎𝑐 (1)

Более того, равенство в выражении Уравнение 1 выполняется тогда и только тогда, когда либо 𝑎 = ±1, либо
𝑐 = ±1.

Лемма 0.1. Два варианта неравенств Уравнение 1 следуют из того, что одно получается из другого заменой
знака 𝑐, поскольку 𝑐 выбрано произвольно в [−1, 1]. Так как для любых 𝑎, 𝑐 ∈ [−1, 1], то 1 ± 𝑎𝑐 ⩾ 0, то
Уравнение 1 эквивалентно |𝑎 ± 𝑐|2 = 𝑎2 + 𝑐2 ± 2𝑎𝑐 ⩽ (1 ± 𝑎𝑐)2 = 1 + 𝑎2𝑐2 ± 2𝑎𝑐, а это эквивалентно
неравенству 𝑎2(1−𝑐2)+𝑐2 ⩽ 1, которое тождественно выполняется, поскольку 1−𝑐2 ⩾ 0, и, следовательно,

𝑎2(1 − 𝑐2) + 𝑐2 ⩽ 1 − 𝑐2 + 𝑐2 = 1 (2)

Обратите внимание, что в выражении Уравнение 2 равенство выполняется тогда и только тогда, когда 𝑎 =
±1 или 𝑐 = ±1. Поскольку при замене 𝑎 и 𝑐 в выражении Уравнение 1 неравенство остаётся неизменным,
тезис следует.

Следствие 0.1. Для любых трёх чисел 𝑎, 𝑏, 𝑐 ∈ [−1, 1] справедливы следующие эквивалентные (для вариантов
знака+ и−) неравенства:

|𝑎𝑏 ± 𝑐𝑏| ⩽ 1 ± 𝑎𝑐 (3)

и равенство выполняется тогда и только тогда, когда 𝑏 = ±1 и либо 𝑎 = ±1, либо 𝑐 = ±1.
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Следствие 0.1. Для 𝑏 ∈ [−1, 1],
|𝑎𝑏 ± 𝑐𝑏| = |𝑏| ⋅ |𝑎 ± 𝑐| ⩽ |𝑎 ± 𝑐|

Таким образом, утверждение следует из Лемма 0.1, а первое равенство выполняется тогда и только тогда,
когда 𝑏 = ±1, поэтому второе утверждение также следует из Лемма 0.1.

Лемма 0.2. Для любых чисел 𝑎, ̃𝑎, 𝑏, ̃𝑏, 𝑐 ∈ [−1, 1], имеем

|𝑎𝑏 − 𝑐𝑏| + |𝑎𝑏̃ + 𝑐𝑏̃| ⩽ 2 (4)

𝑎𝑏 + 𝑎 ̃𝑏 + ̃𝑎 ̃𝑏 − ̃𝑎𝑏 ⩽ 2 (5)

Первая формула верна тогда и только тогда, когда 𝑏, ̃𝑏, 𝑎, 𝑐 = ±1.

Лемма 0.2. Из неравенства Уравнение 3
|𝑎𝑏 − 𝑐𝑏| ⩽ 1 − 𝑎𝑐 (6)

|𝑎𝑏̃ + 𝑐𝑏̃| ⩽ 1 + 𝑎𝑐 (7)

Складывая их, получаем выражение Уравнение 4. Левая часть выражения Уравнение 5 меньше или равна

|𝑎𝑏 − 𝑏 ̃𝑎| + |𝑎 ̃𝑏 + 𝑏̃ ̃𝑎|

изаменой ̃𝑎на 𝑐, выражениеУравнение 7 становитсялевойчастьювыраженияУравнение 4. Если 𝑏, ̃𝑏 = ±1и
𝑎 = ±1, то равенство выполняется в выражении Уравнение 6, а следовательно, и в выражении Уравнение 7.
Наоборот, предположим, что равенство выполняется в выражении Уравнение 4, и предположим, что либо
|𝑏| < 1, либо | ̃𝑏| < 1. Тогда приходим к противоречию.

2 = |𝑏| ⋅ |𝑎 − 𝑐| + |𝑏̃| ⋅ |𝑎 + 𝑐| < |𝑎 − 𝑐| + |𝑎 + 𝑐| ⩽ (1 − 𝑎𝑐) + (1 + 𝑎𝑐) = 2

Итак, если в выражении Уравнение 4 выполняется равенство, то должно быть |𝑏| = | ̃𝑏| = 1. В этом случае
выражение Уравнение 4 принимает вид

|𝑎 − 𝑐| + |𝑎 + 𝑐| = 2

и, если либо |𝑎| < 1, либо |𝑐| < 1, то из Лемма 0.1 следует, что |𝑎 − 𝑐| + |𝑎 + 𝑐| < (1 − 𝑎𝑐) + (1 + 𝑎𝑐) = 2
поэтому также должно быть 𝑎, 𝑐 = ±1.

Следствие 0.2. Если 𝑎, ̃𝑎, 𝑏, 𝑏̃, 𝑐 ∈ {−1, 1}, то неравенства выражения Уравнение 3 и выражения Уравнение 4
эквивалентны, во всех них выполняется равенство. Однако неравенство в выражении Уравнение 5 может быть
строгим.

Следствие 0.2. Мы знаем, что неравенства в выражениях Уравнение 1 и Уравнение 2 эквивалентны, также
из выражения Уравнение 1 следует Уравнение 4. Выбрав ̃𝑏 = 𝑎 в выражении Уравнение 4, поскольку 𝑎 = ±1,
выражение Уравнение 4 примет вид |𝑎𝑏 − 𝑐𝑏| ⩽ 1 − 𝑎𝑐, что эквивалентно 𝑎(𝑏 + ̃𝑏) + ̃𝑎( ̃𝑏 − 𝑏) ⩽ 2.
В наших предположениях либо (𝑏 + ̃𝑏), либо ( ̃𝑏 − 𝑏) равно нулю, поэтому неравенство 𝑎(𝑏 + 𝑏̃) + ̃𝑎( ̃𝑏 − 𝑏) ⩽ 2
(см. Уравнение 5) эквивалентно либо 𝑎(𝑏 + ̃𝑏) ⩽ 2 либо ̃𝑎( ̃𝑏 − 𝑏) ⩽ 2 и в обоих случаях мы можем выбрать
𝑎, 𝑏, ̃𝑏 или ̃𝑎, 𝑏, 𝑏̃ так, чтобы произведение было отрицательным, а неравенство — строгим.
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Неравенства Белла для случайных величин

Теорема 0.1 (Теорема Белла). Пусть (𝜉1, 𝜉2, 𝜉3, 𝜉4) — случайный вектор с компонентами по модулю не превос‐
ходящими 1. Тогда справедливы три неравенства

𝔼[|𝜉1𝜉2 − 𝜉2𝜉3|] ⩽ 1 − 𝔼[𝜉1𝜉3]

𝔼[|𝜉1𝜉2 + 𝜉2𝜉3|] ⩽ 1 + 𝔼[𝜉1𝜉3]

𝔼[|𝜉1𝜉2 − 𝜉2𝜉3|] + 𝔼[|𝜉1𝜉4 + 𝜉3𝜉4|] ⩽ 2,

причём первое и второе неравенства эквивалентны. Если же 𝜉1 или 𝜉3 дискретные со значениями±1, то все три
неравенства эквивалентны.

Теорема 0.1. На вероятностном пространствеΩ случайного вектора используем полученные выше арифме‐
тические неравенства поточечно вместе с |𝐸(𝛼)| ⩽ 𝐸(|𝛼|).
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