
Центральная предельная теорема

Исследуйте центральную предельную теорему

Это краткий обзор центральной предельной теоремы (ЦПТ), целью которого является придать кон‐
кретный смысл природе сходимости (по распределению, а не по вероятности).
Эта страница содержит (в конце) интерактивный контент, который вы можете свободно изучать и из‐
менять. Для более сложных изменений рекомендуется запустить и отредактировать интерактивный
Jupyter Notebook. Вы можете:

• Запустить его на компьютере с установленнымPython/Jupyter‐lab (требуются ipywidgets, numpy,
matplotlib).

• Запустить его с помощьюонлайн‐сервиса. Официальный сайт Jupyter предоставляет бесплатный
и открытый сервис. Если вам нужна большая вычислительная мощность, вы можете импортиро‐
вать блокнот в Google Colab (требуется учётная запись Google).

Результаты о сходимости

Рассмотрим некоторые основные результаты о сходимости для сумм центрированных случайных величин
с конечной дисперсией.

Классическая формулировка

Теорема 0.1 (Центральная предельная теорема). Пусть (𝑋𝑛)𝑛≥1 — последовательность независимых одина‐
ково распределённых (i.i.d.) вещественнозначных случайных величин с 𝔼[|𝑋𝑛|2] < ∞. Обозначим 𝑚 ∶= 𝔼[𝑋𝑛],
𝜎 ∶= √𝔻[𝑋𝑛] и

𝑆𝑛 ∶= 1√𝑛
𝑛

∑
𝑖=1

𝑋𝑖 − 𝑚
𝜎 (1)

Тогда𝑆𝑛 сходится по распределению к стандартной нормальной случайной величине, скажем𝑍 ∼ 𝒩(0, 1). Дру‐
гими словами, для каждой ограниченной измеримой функции 𝑓 ∶ ℝ → ℝ, непрерывной почти всюду, выполняется

lim
𝑛→∞

𝔼[𝑓(𝑆𝑛)] = 1√
2𝜋 ∫ 𝑓(𝑥)𝑒−𝑥2/2𝑑𝑥

В частности, из предыдущей теоремыможно вывести равномерную сходимость функции распределения

lim
𝑛→∞

sup
𝑎<𝑏

|ℙ(𝑎 < 𝑆𝑛 ≤ 𝑏) − ℙ(𝑎 < 𝑍 ≤ 𝑏)| = 0
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Количественная версия

Предыдущая Теорема 0.1 не затрагивает скорость сходимости.

Теорема 0.2 (Количественная центральная предельная теорема). Пусть (𝑌𝑛)𝑛≥1 —последовательность неза‐
висимых случайных величин с 𝔼[𝑌𝑛] = 0 и 𝔼[𝑌 2

𝑛 ] = 1, 𝔼[|𝑌𝑛|3] < ∞. Пусть

𝑆𝑛 ∶= 1√𝑛
𝑛

∑
𝑖=1

𝑌𝑖

Для 𝑔 ∈ 𝐶3
𝑏 (ℝ) с𝐶 ∶= sup𝑥 |𝑔‴(𝑥)| выполняется

|𝔼[𝑔(𝑆𝑛)] − 𝔼[𝑔(𝑍)]| ≤ 𝐶
6√𝑛 (23/2

√𝜋 + 1
𝑛

𝑛
∑
𝑘=1

𝔼[|𝑌𝑘|3])

где 𝑍 ∼ 𝒩(0, 1); а именно
𝔼[𝑔(𝑍)] = 1√

2𝜋 ∫ 𝑔(𝑥)𝑒−𝑥2/2𝑑𝑥

Лемма 0.1. Пусть 𝑉 , 𝑌 и 𝑍 —три случайные величины, такие что

• 𝑉 и 𝑌 независимы; 𝑉 и 𝑍 независимы.
• 𝑌 и 𝑍 имеют конечный третий момент.
• 𝔼[𝑌 ] = 𝔼[𝑍] и 𝔼[𝑌 2] = 𝔼[𝑍2].

Тогда для любой 𝑔 ∈ 𝐶3
𝑏 , полагая𝐶 ∶= sup𝑥∈ℝ |𝑔‴(𝑥)|, выполняется следующее неравенство:

|𝔼[𝑔(𝑉 + 𝑌 )] − 𝔼[𝑔(𝑉 + 𝑍)]| ≤ 𝐶
6 (𝔼[|𝑌 |3] + 𝔼[|𝑍|3])

Лемма 0.1. По формуле Тейлора, для трёх точек 𝑣, 𝑦, 𝑧 ∈ ℝ выполняется

𝑔(𝑣 + 𝑦) − 𝑔(𝑣 + 𝑧) = 𝑔′(𝑣)(𝑦 − 𝑧) + 1
2𝑔″(𝑣)(𝑦2 − 𝑧2) + 𝑅(𝑣, 𝑦) − 𝑅(𝑣, 𝑧)

где остаточные члены 𝑅(𝑣, ⋅) ограничены как |𝑅(𝑣, 𝑥)| ≤ 𝐶|𝑥|3/6. Теперь вычислим предыдущую формулу
для каждого 𝜔 ∈ Ω в точках 𝑣 = 𝑉 (𝜔), 𝑦 = 𝑌 (𝜔) и 𝑧 = 𝑍(𝜔), и возьмём математическое ожидание. Тогда
𝔼[𝑔′(𝑉 )(𝑌 − 𝑍)] = 𝔼[𝑔′(𝑉 )]𝔼[(𝑌 − 𝑍)] = 0 (используя гипотезы о независимости и равенстве математиче‐
ских ожиданий). Аналогично для члена 𝑔″(𝑉 )(𝑌 2 − 𝑍2). Таким образом

|𝔼[𝑔(𝑉 + 𝑌 ) − 𝑔(𝑉 + 𝑍)]| = |𝔼[𝑅(𝑉 , 𝑌 ) − 𝑅(𝑉 , 𝑍)]| ≤ 𝐶
6 (𝔼[|𝑌 |3] + 𝔼[|𝑍|3])

Лемма 0.2. Пусть 𝑔 ∈ 𝐶3
𝑏 (ℝ), пусть 𝑌1, … , 𝑌𝑛 — независимые случайные величины, и 𝑍1, … , 𝑍𝑛 — другой набор

независимых случайных величин. Предположим, что 𝔼[𝑌𝑖] = 𝔼[𝑍𝑖] и 𝔼[𝑌 2
𝑖 ] = 𝔼[𝑍2

𝑖 ] < ∞. Пусть 𝐶 определено
как в Лемма 0.1. Тогда

∣𝔼 [𝑔 (𝑌1+…+𝑌𝑛√𝑛 ) − 𝑔 (𝑍1+…+𝑍𝑛√𝑛 )]∣ ≤ 𝐶
6𝑛3/2

𝑛
∑
𝑘=1

(𝔼[|𝑌𝑘|3] + 𝔼[|𝑍𝑘|3])
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В частности, если 𝑌𝑖 являются i.i.d. и 𝑍𝑖 являются i.i.d. (в общем случае с другим распределением)

∣𝔼 [𝑔 (𝑌1+…+𝑌𝑛√𝑛 ) − 𝑔 (𝑍1+…+𝑍𝑛√𝑛 )]∣ ≤ 𝐶 (𝔼[|𝑌1|3] + 𝔼[|𝑍1|3])
6√𝑛

Лемма 0.2. Без ограничения общности, можно предположить, что все 𝑌1, … , 𝑌𝑛, 𝑍1, … , 𝑍𝑛 являются неза‐
висимыми случайными величинами. Тогда запишем 𝑉𝑘 = (𝑌1 + … + 𝑌𝑘−1 + 𝑍𝑘+1 + … + 𝑍𝑛)/√𝑛, чтобы
получить

∣𝔼 [𝑔 (𝑌1+…+𝑌𝑛√𝑛 ) − 𝑔 (𝑍1+…+𝑍𝑛√𝑛 )]∣ = ∣
𝑛

∑
𝑘=1

𝔼 [𝑔 (𝑉𝑘 + 𝑌𝑘√𝑛) − 𝑔 (𝑉𝑘 + 𝑍𝑘√𝑛)]∣

≤
𝑛

∑
𝑘=1

𝐶
6 (𝔼[|𝑌𝑘/√𝑛|3] + 𝔼[|𝑍𝑘/√𝑛|3])

где в последнем неравенстве мы использовали Лемма 0.1 𝑛 раз.

Теорема 0.2. Если𝑍𝑖 являются i.i.d. стандартныминормальными, то (𝑍1+…+𝑍𝑛)/√𝑛 также является стан‐
дартной нормальной величиной, и, следовательно, её распределение не зависит от 𝑛. Теорема 0.2, таким
образом, является следствием Лемма 0.2 и тождества 𝔼[|𝑍𝑖|3] = 23/2/√𝜋.

Упражнение 0.1. Пусть 𝑍 ∼ 𝒩(0, 1) — стандартная нормальная случайная величина. Пусть (𝑌𝑛)𝑛≥1 — i.i.d.
последовательность с 𝔼[𝑌 𝑘

𝑖 ] = 𝔼[𝑍𝑘] для 𝑘 = 1, … , ℓ. Пусть 𝑔 ∈ 𝐶ℓ
𝑏(ℝ). Докажите, что существует константа

𝐶 (зависящая от 𝑔 и распределения 𝑌𝑖), такая что

|𝔼[𝑔(𝑆𝑛)] − 𝔼[𝑔(𝑍)]| ≤ 𝐶𝑛−(ℓ−1)/2

Мартингальная версия

Стоит упомянуть, что Центральная предельная теорема выходит далеко за рамки независимых случайных
величин. В конечном счёте, для такого типа результата даже не требуется, чтобы величины были определе‐
ны на линейном пространстве (например, совершение малых случайных шагов на многообразии, по мере
уменьшенияшагов, будет сходиться к распределениюна пространстве непрерывных кривых намногообра‐
зии, называемому броуновским движением). Таким образом, существуют сильные локальные версии ЦПТ,
версии для метрических пространств, эргодические версии и так далее. Интересный пример, требующий
лишь элементарных гипотез, охватывает случай мартингалов.

Теорема 0.3 (Центральная предельная теорема для мартингалов). Пусть (𝑋𝑛)𝑛≥1 — последовательность ве‐
щественнозначных случайных величин и пусть

𝑀𝑛 ∶= 𝑋1 + … + 𝑋𝑛

Предположим, что

• 𝔼[𝑋𝑛|𝑀𝑛−1] = 0.
• Для𝑄𝑛 ∶= 𝔼[𝑋2

𝑛|𝑀𝑛−1], выполняется∑∞
𝑛=1 𝑄𝑛 = ∞ п.н. (почти наверное).

• 𝔼 [sup𝑛 𝔼[|𝑋𝑛|3|𝑀𝑛−1]] < ∞.

Пусть 𝜏ℓ ∶= inf{𝑁 ∈ ℕ ∶ ∑𝑁
𝑛=1 𝑄𝑛 ≥ ℓ}. Тогда 𝑀𝜏ℓ

/
√

ℓ сходится к стандартной нормальной величине по
распределению при ℓ → ∞.
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Результаты о несходимости

Пока всё хорошо. Если 𝑌𝑛 — центрированные i.i.d. случайные величины с конечной дисперсией, то 𝑆𝑛 схо‐
дится к нормальному пределу. По распределению. Будет ли эта сходимость иметь место по вероятности
или даже п.н.?

Утверждение 0.1. Независимо от вероятностного пространства и распределения 𝑌𝑛, Центральная предельная
теорема не выполняется по вероятности, даже для подпоследовательностей.

Суть в том, что если две последовательности (𝑆𝑛), (𝑆′
𝑛) сходятся по вероятности, то𝑆𝑛 +𝑆′

𝑛 также сходится
по вероятности (по неравенству треугольника). То же утверждение неверно для сходимости по распределе‐
нию, так как сходимость по распределению касается не самих случайных величин, а только их распределе‐
ний. Таким образом, сходимость 𝑆𝑛 или 𝑆′

𝑛 ничего не говорит об их совместном распределении.

Утверждение 0.1. Любая предельная точка (вдоль некоторой подпоследовательности) по вероятности𝑆 для
𝑆𝑛 будет иметь стандартное нормальное распределение. В частности,

√
2𝑆2𝑛 − 𝑆𝑛 сходилась бы к (

√
2 −

1)𝑆 ∼ 𝒩(0, 3 − 2
√

2) по вероятности (вдоль той же подпоследовательности). Но

𝑆′
𝑛 ∶=

√
2𝑆2𝑛 − 𝑆𝑛 = 1√𝑛

2𝑛
∑

𝑖=𝑛+1
𝑌𝑖

является суммой 𝑛 i.i.d. величин, делённой на
√𝑛, следовательно, Теорема 0.1 применима к 𝑆′

𝑛. А именно,
для любой предельной точки 𝑆, величина (

√
2 − 1)𝑆 также должна иметь закон 𝒩(0, 1). Следовательно,

предельных точек не существует.

Визуализация сходимости

Что означает, что последовательность сходится по распределению? Зафиксируем 𝜇, центрированную веро‐
ятностнуюмеру на ℝ, и некоторое значение 𝑛, ‘достаточно большое’ (как мы видели, насколько большое, за‐
висит от 𝜇, например, от её третьего момента), и рассмотрим i.i.d. величины 𝑋1, … , 𝑋𝑛 с законом 𝜇 и соот‐
ветствующую им 𝑆𝑛, как в Уравнение 1. Мыможем многократно, скажем 𝑁 раз, независимо сгенерировать
выборку (𝑋1, … , 𝑋𝑛) и, следовательно, 𝑆𝑛. Центральная предельная теорема говорит нам, что с большой
вероятностью доля выборок, для которых 𝑆𝑛 попадает в заданный интервал [𝑎, 𝑏], приблизительно равна
интегралу Гаусса по [𝑎, 𝑏]. Здесь приблизительно означает, что вероятность этого события сходится к 1 по
мере роста 𝑁 и 𝑛.
При большом 𝑛 вероятность нахождения выборки в заданном интервале сходится к интегралу Гаусса по
этому интервалу. В этом и заключается содержание центральной предельной теоремы. Здесь мы берём 𝑁
выборок, строим гистограмму их распределения по интервалам и сравниваем результат с теоретической
плотностью Гаусса.

С другой стороны, тот факт, что 𝑆𝑛 не сходится п.н., означает, что если мы зафиксируем одну реализацию
(так сказать, одно 𝜔) и будем отслеживать значение 𝑆𝑛 в зависимости от 𝑛, оно не сойдётся ни к какому
значению.

Каждая отдельная реализация не сходится как функция от 𝑛. Мы генерируем 𝑋𝑖 как i.i.d. и строим график
𝑆𝑛 как функции от 𝑛. Даже при больших 𝑛 график колеблется, и сходимость не наступает.
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Рисунок 1: При большом 𝑛 вероятность нахождения выборки в заданном интервале сходится к интегралу
Гаусса по этому интервалу. В этом и заключается содержание центральной предельной теоремы.
Здесьмыберём𝑁 выборок, строим гистограммуих распределенияпоинтервалами сравниваем
результат с теоретической плотностью Гаусса.
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Рисунок 2: Каждая отдельная реализация не сходится как функция от 𝑛. Мы генерируем 𝑋𝑖 как i.i.d. и стро‐
им график 𝑆𝑛 как функции от 𝑛. Даже при больших 𝑛 график колеблется, и сходимость не насту‐
пает. Здесь мы строим 𝑁 = 5 различных реализаций до 𝑛 = 106.
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