
Статистические свойства одномерных случайных
блужданий

Случайное блуждание на ℤ

В этой заметке рассматриваются некоторые особенности одномерного случайного блуждания.Мырас‐
сматриваем случайно блуждающую частицу, которая каждую секунду может сделать шаг вверх с веро‐
ятностью 𝑝 или шаг вниз с вероятностью 1 − 𝑝. При 𝑝 = 1/2 частица вернётся в начало координат с
вероятностью 1. Затем можно изучить статистические свойства случайного блуждания, пока частица
находится вне 0. Некоторые утверждения доказываются разными методами в разных разделах.
Эта страница содержит (в конце) интерактивный контент, который вы можете свободно изучать и из‐
менять. Для более сложных изменений рекомендуется запустить и отредактировать интерактивный
Jupyter Notebook. Вы можете:

• Запустить его на компьютере с установленнымPython/Jupyter‐lab (требуются ipywidgets, numpy,
matplotlib, scipy).

• Запустить его с помощьюонлайн‐сервиса. Официальный сайт Jupyter предоставляет бесплатный
и открытый сервис. Если вам нужна большая вычислительная мощность, вы можете импортиро‐
вать блокнот в Google Colab (требуется учётная запись Google).

Определения

Начнём с формального определения случайного блуждания.

Определение 0.1 (Одномерное случайное блуждание). Пусть (𝑋𝑖)𝑖≥1 — последовательность независимых
одинаково распределённых (i.i.d.) случайных величин, таких что

ℙ(𝑋𝑖 = +1) = 𝑝 and ℙ(𝑋𝑖 = −1) = 1 − 𝑝

для некоторого 𝑝 ∈ [0, 1]. Одномерное случайное блуждание, начинающееся в начале координат, — это
последовательность случайных величин (𝑆𝑛)𝑛≥0, определяемая как 𝑆0 ∶= 0 и

𝑆𝑛 ∶=
𝑛

∑
𝑖=1

𝑋𝑖 for 𝑛 ≥ 1 (1)

Блуждание называется симметричным, если 𝑝 = 1/2, и асимметричным в противном случае. Мы гово‐
рим, что частица возвращается в начало координат в момент времени 𝑛, если 𝑆𝑛 = 0. Время первого
возвращения в начало координат— это случайная величина

𝜏0 ∶= inf{𝑛 ≥ 1 ∶ 𝑆𝑛 = 0} (2)

где мы полагаем inf ∅ = ∞.
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Сначала определим, при каких значениях 𝑝 частица наверняка вернётся в начало координат, то естьℙ(𝜏0 <
∞) = 1. Такое блуждание называется возвратным. Если ℙ(𝜏0 < ∞) < 1, блуждание называется невозврат‐
ным.

Вернётся ли частица в начало координат?

Поведение блуждания кардинально различается в симметричном и асимметричном случаях.

Асимметричный случай: уход на бесконечность

Если блуждание несимметрично (𝑝 ≠ 1/2), то существует суммарный дрейф в одном направлении. Усилен‐
ного закона больших чисел (УЗБЧ) достаточно, чтобы показать, что частица почти наверное (п.н.) уходит
от начала координат навсегда.

Утверждение 0.1. Если 𝑝 ≠ 1/2, одномерное случайное блуждание является невозвратным. Фактически,
|𝑆𝑛| → ∞ п.н., что означает, что частица посещает начало координат лишь конечное число раз.

Утверждение 0.1. Математическое ожидание одного шага равно 𝑚 ∶= 𝔼[𝑋𝑖] = 2𝑝 − 1. Это 𝑚 ≠ 0 тогда и
только тогда, когда 𝑝 ≠ 1/2. Согласно Усиленному закону больших чисел, мы имеем п.н.

lim
𝑛→∞

𝑆𝑛
𝑛 = 𝑚

Это означает, что если 𝑚 ≠ 0, то |𝑆𝑛| → ∞ п.н. Следовательно, она может принимать значение 0 лишь
конечное число раз. Поэтому блуждание является невозвратным.

Примечание. Мытолько что проверили, что число возвращений частицы в 0 конечно с вероятностью 1, если
𝑝 ≠ 1/2. Корректный способ сделать это — представить, что для каждого 𝑝 ∈ [0, 1] у нас есть вероятностная
мера ℙ𝑝 на пространстве траекторий X ∶ ℕ → ℤ. Затем определим случайную величину

𝒩0 ≡ 𝒩0(X) ∶= |{𝑛 ∈ ℕ ∶ 𝑆𝑛 = 0}| ∈ ℕ ∪ {+∞}

Это число посещений частицей начала координат. Утверждение 0.1 также можно записать как

ℙ(𝒩0 < ∞) = 1 𝑝 ≠ 1/2

Упражнение 0.1. Пусть 𝑝 ≠ 1/2. Докажите, что случайная величина 𝒩0 имеет геометрическое распреде‐
ление ℙ(𝒩0 = 𝑘) = (1 − 𝜃)𝑘−1𝜃 для 𝑘 ≥ 1 и некоторого 𝜃 = ℙ(𝜏0 = ∞) ∈ (0, 1).

Упражнение 0.2. Геометрическое распределение 𝒩0 в Упражнение 0.1 зависит от параметра 𝜃, который, в
свою очередь, зависит от 𝑝, обозначим его 𝜃𝑝. (Напомним, что 𝑝 ≠ 1/2).

• Докажите, что 𝜃𝑝 = 𝜃1−𝑝.
• Докажите, что для 𝑝 > 1/2 отображение 𝑝 ↦ 𝜃𝑝 является строго возрастающим. (Подсказка: нарисуйте
два случайных блуждания, соответствующие 𝑝 > 𝑞 > 1/2. Если первый шаг равен −1, оба вернутся
в 0. Если первый шаг равен +1, можете ли вы реализовать их одновременно так, чтобы блуждание с
параметром 𝑝 никогда не было меньше блуждания с параметром 𝑞?).
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Симметричный случай: достоверное возвращение

Когда блуждание симметрично, дрейф отсутствует. Можно предположить, что частица всё же может слу‐
чайно уйти. Однако оказывается, что возвращение в начало координат почти достоверно. Мощный способ
убедиться в этом — проанализировать математическое ожидание числа возвращений.

Для 𝜏 (0)
0 ∶= 0 определим для 𝑛 ≥ 1

𝜏 (𝑛)
0 ≡ 𝜏 (𝑛)

0 (X) ∶= inf{𝑚 > 𝜏 (𝑛−1)
0 ∶ 𝑆𝑚 = 0}

так что 𝜏0 ≡ 𝜏 (1)
0 , см. Уравнение 2. 𝜏 (𝑛)

0 — это 𝑛‐й момент времени, когда блуждание касается начала коор‐
динат. Имеет место простой факт

ℙ(𝜏 (𝑛)
0 < ∞) = ℙ(𝜏0 < ∞)𝑛

поскольку действительно каждый раз, когда мы посещаем 0, процесс начинается заново. Таким образом,
вероятность того, что мы вернёмся 𝑛 раз, в точности равна вероятности того, что мы вернёмся один раз, в
степени 𝑛. Это даёт нам мощный инструмент для доказательства того, что ℙ(𝜏0 < ∞) = 1. Действитель‐
но

∞
∑
𝑚=0

ℙ(𝑆𝑚 = 0) = 𝔼 [
∞

∑
𝑚=0

1𝑆𝑚=0] = 𝔼 [
∞

∑
𝑛=0

1𝜏(𝑛)
0 <∞]

=
∞

∑
𝑛=0

ℙ(𝜏0 < ∞)𝑛 = 1
1 − ℙ(𝜏0 < ∞)

То есть (обе части могут быть равны +∞)

𝔼[𝒩0] =
∞

∑
𝑚=0

ℙ(𝑆𝑚 = 0) = 1
1 − ℙ(𝜏0 < ∞) (3)

Утверждение 0.2. Если 𝑝 = 1/2, одномерное симметричное случайное блуждание является возвратным, т.е.
ℙ(𝜏0 < ∞) = 1.

Стоит напомнить оценки Стирлинга для факториала

𝑛𝑛𝑒−𝑛√
2𝜋𝑛𝑒1/(12𝑛+1) ≤ 𝑛! ≤ 𝑛𝑛𝑒−𝑛√

2𝜋𝑛𝑒1/(12𝑛) 𝑛 ≥ 1 (4)

Утверждение 0.2. Чтобы частица находилась в начале координат в момент времени 𝑛, она должна была сде‐
лать одинаковое количество шагов вверх и вниз. Это возможно только если 𝑛 чётно. Пусть 𝑛 = 2𝑘 для неко‐
торого 𝑘 ≥ 1. Число путей длиной 2𝑘 равно 22𝑘. Число путей с ровно 𝑘 шагами вверх и 𝑘 шагами вниз
даётся биномиальным коэффициентом (2𝑘

𝑘 ). Таким образом, вероятность нахождения в начале координат
в момент времени 2𝑘 равна

ℙ(𝑆2𝑘 = 0) = (2𝑘
𝑘 ) (1

2)
2𝑘

Если мы используем приближение Стирлинга (Уравнение 4) для факториалов в последней формуле, мы
получаем для 𝑘 ≥ 1

ℙ(𝑆2𝑘 = 0) = 1√
𝜋𝑘

(1 − 𝜀𝑘), 1
8𝑘 + 3 ≤ 𝜀𝑘 ≤ 1

8𝑘 (5)

Поскольку ряд ∑𝑘 ℙ(𝑆2𝑘 = 0) расходится, мы получаем утверждение теоремы благодаря Уравнение 3.
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Другое доказательство Утверждение 0.2. Пусть 𝑝𝑥 —вероятность того, что блуждающий, стартующийиз точ‐
ки 𝑥, когда‐нибудь достигнет 0. Мы хотим показать, что 𝑝𝑥 = 1 для всех 𝑥 ∈ ℤ. Очевидно, 𝑝0 = 1. Для 𝑥 ≠ 0,
обусловливая по первому шагу, мы имеем:

𝑝𝑥 = 1
2𝑝𝑥−1 + 1

2𝑝𝑥+1, 𝑥 ∈ ℤ ∖ {0}

Это уравнение означает, что точки (𝑥 − 1, 𝑝𝑥−1), (𝑥, 𝑝𝑥) и (𝑥 + 1, 𝑝𝑥+1) коллинеарны. Единственная прямая,
проходящая через (0, 1) и остающаяся ограниченной (0 ≤ 𝑝𝑥 ≤ 1) для всех 𝑥, — это постоянная прямая
𝑝𝑥 = 1. Таким образом, блуждание является возвратным.

Упражнение 0.3. Используйте тот же подход, чтобы доказать, что для 𝑝 ≠ 1/2, 1 − 𝜃𝑝 = ℙ(𝜏0 < ∞) < 1.
Выразите 𝜃𝑝 через ряд.

Примечание 0.1. Возвратность не является тривиальным следствием симметрии. Если бы мы рассматрива‐
ли симметричное блуждание на ℤ3 (и вообще на любой конечно порождённой группе, которая не является
виртуально изоморфной ℤ или ℤ2), блуждание было бы невозвратным несмотря на симметрию. Неформаль‐
но говоря, возвратность является следствием симметрии и того факта, что ℤ — это маленький граф.

Экскурсии

Статистические свойства так называемых экскурсий оказываются довольно интересными. Здесь мы даём
краткий обзор закона времени возвращения.

Определение 0.2 (Экскурсия). Отрезок пути (𝑆𝑚, 𝑆𝑚+1, … , 𝑆𝑚+𝑛) является экскурсиейиз 0 длиной𝑛, если
𝑆𝑚 = 0, 𝑆𝑚+𝑛 = 0 и 𝑆𝑚+𝑘 ≠ 0 для всех 𝑘 ∈ {1, … , 𝑛 − 1}. Как только частица касается 0, процесс начина‐
ется заново, статистические свойства всех экскурсий идентичны. Поэтому мы можем сосредоточиться на
первой экскурсии, продолжительность которой задаётся временем первого возвращения 𝜏0.

Наша цель — вычислить распределение вероятностей длины экскурсии, т.е. ℙ(𝜏0 = 𝑛). Заметим, что если
𝑆𝑛 = 0, то 𝑛 должно быть чётным, поэтому нам нужно вычислить только ℙ(𝜏0 = 2𝑘) для 𝑘 ≥ 1. Если
блуждание несимметрично, такая длина имеет ненулевую вероятность быть бесконечной.

Упражнение 0.4. Для |𝑠| < 1 определим

𝑣(𝑥, 𝑠) ∶= 𝔼𝑥[𝑠𝜏0] =
∞

∑
𝑘=0

ℙ𝑥(𝜏0 = 𝑘)𝑠𝑘

где 𝔼𝑥 означает математическое ожидание для случайного блуждания, начинающегося в точке 𝑥 (это то же
самое, что начинаться в 0 и достигать точки −𝑥).

• Докажите, что 𝑣(𝑥, 𝑠) = 𝑣(1, 𝑠)𝑥 для 𝑥 ≥ 1, и 𝑣(𝑥, 𝑠) = 𝑣(−1, 𝑠)−𝑥 для 𝑥 ≤ −1. Подсказка: стартуя в
𝑥 = 2, нам сначала нужно достичь 1, а затем из 1 — достичь 0.

• Используйте предыдущий факт, чтобы вычислить 𝑣(𝑥, 𝑠) для всех 𝑥, 𝑠, включая 𝑥 = 0. В частности,
проверьте

𝑣(0, 𝑠) = 1 − √1 − 4𝑝(1 − 𝑝)𝑠2, 𝑣(1, 𝑠) = 𝑣(0, 𝑠)/(2𝑠𝑝), 𝑣(−1, 𝑠) = 𝑣(0, 𝑠)/(2𝑠(1 − 𝑝))

• Выведите, что 𝜃𝑝 = ℙ0(𝜏0 = ∞) = |1 − 2𝑝|, что, в частности, доказывает результаты предыдущего
раздела.
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• Используйте формулу Тейлора

1 −
√

1 − 4𝑡 =
∞

∑
𝑛=1

𝐴𝑛𝑡𝑛, 𝐴𝑛 = (2𝑛)!
(2𝑛 − 1)(𝑛!)2

чтобы вывести, что
ℙ0(𝜏0 = 2𝑘) = 𝐴𝑘𝑝𝑘(1 − 𝑝)𝑘 (6)

Можно привести и чисто комбинаторное доказательство того же факта.

Лемма 0.1 (Принцип отражения). Пусть 𝑆𝑛 — симметричное случайное блуждание. Для любых целых чисел
𝑎 > 𝑏 > 0 количество путей из начала координат в точку (𝑛, 𝑏), которые касаются или пересекают уровень 𝑎,
равно количеству путей из начала координат в точку (𝑛, 2𝑎 − 𝑏).

Лемма 0.1. Пусть путь (𝑆0, 𝑆1, … , 𝑆𝑛) начинается в 𝑆0 = 0 и заканчивается в 𝑆𝑛 = 𝑏. Предположим, что
этот путь касается или пересекает уровень 𝑎. Пусть 𝑘 = inf{𝑗 ≥ 1 ∶ 𝑆𝑗 = 𝑎} — первый момент времени,
когда путь достигает 𝑎.
Мы можем создать новый, отражённый путь (𝑆′

0, … , 𝑆′
𝑛), устанавливая инволютивную биекцию между пу‐

тями, пересекающими 𝑎 и заканчивающимися в 𝑏, и путями, заканчивающимися в 2𝑎 − 𝑏. Определим:
• Для 𝑗 ≤ 𝑘 пусть 𝑆′

𝑗 = 𝑆𝑗. Новый путь идентичен старому до первого момента достижения 𝑎.
• Для 𝑗 > 𝑘 пусть 𝑆′

𝑗 = 𝑎 − (𝑆𝑗 − 𝑎) = 2𝑎 − 𝑆𝑗. Мы отражаем оставшуюся часть пути относительно
прямой 𝑦 = 𝑎.

Исходныйпуть начинается в (0, 0)и заканчивается в (𝑛, 𝑏). Новыйпуть такженачинается в (0, 0) (поскольку
𝑘 ≥ 1) и заканчивается в (𝑛, 𝑆′

𝑛) = (𝑛, 2𝑎 − 𝑆𝑛) = (𝑛, 2𝑎 − 𝑏).

Упражнение 0.5. Используйте Лемма 0.1, чтобы доказать напрямую ℙ0(𝜏0 = 2𝑘) = 𝐴𝑘𝑝𝑘(1 − 𝑝)𝑘, подсчи‐
тывая пути, которые начинаются и заканчиваются в 0 впервые после 2𝑘 шагов.

Примечание. Используя приближение Стирлинга для Уравнение 6, мы находим, что для 𝑝 = 1/2

ℙ(𝜏0 = 2𝑘) ≈ 1
2√𝜋𝑘−3/2(1 + 𝑜𝑘(1))

Следовательно,𝔼[𝜏0] = ∑𝑘 2𝑘ℙ(𝜏0 = 2𝑘) = ∞. Это означает, что, хотя возвращение достоверно,∑𝑘 ℙ(𝜏0 =
2𝑘) = 1, математическое ожидание времени первого возвращения бесконечно.

Упражнение 0.6 (Пути в положительной полуплоскости). Для симметричного блуждания найдите количе‐
ство путей из (0, 0) в точку (𝑛, 𝑦) (с 𝑦 > 0), которые остаются строго положительными для всех времён
𝑘 ∈ {1, … , 𝑛}.

Решение

Путь должен начинаться с шага в (1, 1). Затем он должен пройти из (1, 1) в (𝑛, 𝑦) за 𝑛 − 1 шагов, не
касаясь уровня 𝑦 = 0. Общее число путей из (1, 1) в (𝑛, 𝑦) равно 𝑁((1, 1) → (𝑛, 𝑦)). По принципу
отражения (Лемма 0.1 с 𝑎 = 1), число путей, касающихся уровня 0, равно числу путей из (1, −1) в
(𝑛, 𝑦), т.е. 𝑁((1, −1) → (𝑛, 𝑦)). Таким образом, искомое число путей равно:

𝑁>0 = 𝑁((1, 1) → (𝑛, 𝑦)) − 𝑁((1, −1) → (𝑛, 𝑦))
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Используя формулу 𝑁((𝑠, 𝑎) → (𝑡, 𝑏)) = ( 𝑡−𝑠
(𝑏−𝑎+𝑡−𝑠)/2), получаем:

𝑁>0 = ( 𝑛 − 1
(𝑦 − 1 + 𝑛 − 1)/2) − ( 𝑛 − 1

(𝑦 − (−1) + 𝑛 − 1)/2) = 𝑦
𝑛( 𝑛

(𝑛 + 𝑦)/2) = 𝑦
𝑛𝑁((0, 0) → (𝑛, 𝑦))

Упражнение0.7 (Максимумвконечнойточке). Найдите количествопутейиз (0, 0) в (𝑛, 𝑦) таких, что𝑆𝑘 < 𝑦
для всех 𝑘 ∈ {0, … , 𝑛 − 1}.

Решение

Эта задача симметрична предыдущей. Рассмотрим обратный путь от (𝑛, 𝑦) до (0, 0). Это путь длины 𝑛,
идущий из (0, 0) в (𝑛, −𝑦). Условие 𝑆𝑘 < 𝑦 для исходного пути эквивалентно тому, что для нового пути
𝑆′

𝑘 > −𝑦 для 𝑘 ∈ {1, … , 𝑛}. Поменяв знак, это то же самое, что и количество путей из (0, 0) в (𝑛, 𝑦),
которые остаются строго положительными. Таким образом, ответ такой же, как и в Упражнение 0.6:
𝑦
𝑛𝑁((0, 0) → (𝑛, 𝑦)).

Упражнение 0.8 (Пути Дика). Найдите количество путей симметричного случайного блуждания из (0, 0) в
(2𝑛, 0), которые остаются неотрицательными, т.е. 𝑆𝑘 ≥ 0 для всех 𝑘 ∈ {0, … , 2𝑛}.

Решение

Это классическая задача о путях Дика. Ответ — 𝑛‐е число Каталана 𝐶𝑛.

𝐶𝑛 = 1
𝑛 + 1(2𝑛

𝑛 )

Это можно вывести с помощью принципа отражения. Общее число путей из (0, 0) в (2𝑛, 0) равно (2𝑛
𝑛 ).

Число «плохих» путей (опускающихся ниже оси) — это число путей, которые касаются или пересекают
прямую 𝑦 = −1. По принципу отражения, это равно числу путей из (0, 0) в (2𝑛, −2), что составляет
( 2𝑛

𝑛−1). Число «хороших» путей — это разность:

(2𝑛
𝑛 ) − ( 2𝑛

𝑛 − 1) = 1
𝑛 + 1(2𝑛

𝑛 )

Упражнение 0.9 (Мосты). Найдите количество путей симметричного случайного блуждания из (0, 0) в
(2𝑛, 0) со строго положительными внутренними вершинами, т.е. 𝑆𝑘 > 0 для 𝑘 ∈ {1, … , 2𝑛 − 1}.

Решение

Такой путь должен начинаться с шага в (1, 1) и заканчиваться шагом из (2𝑛 − 1, 1). Часть пути от (1, 1)
до (2𝑛 − 1, 1) имеет длину 2𝑛 − 2 и не должна опускаться ниже уровня 𝑦 = 1. Это эквивалентно неот‐
рицательному пути длины 2𝑛 − 2 из (0, 0) в (0, 0). Согласно Упражнение 0.8 (с заменой 𝑛 на 𝑛 − 1), это
число равно (𝑛 − 1)‐му числу Каталана:

𝐶𝑛−1 = 1
𝑛(2𝑛 − 2

𝑛 − 1 )
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Рисунок 1: Траектория случайного блужданияпредставляет собойконкатенациюэкскурсий. Суть в том, что
с всё большей вероятностью, по мере того как мы смотрим на картину издалека (или увеличива‐
ем число шагов), мы видим очень близкие посещения 0, прерываемые очень длинными экскур‐
сиями (действительно, их длина конечна, но имеет бесконечное математическое ожидание).
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Закон арксинуса

Удивительныйрезультаткасается времени, которое симметричное случайноеблужданиепроводитпоодну
сторону от оси. Оказывается, наиболее вероятные сценарии — это когда частица проводит почти всё своё
время на положительной стороне или почти всё своё время на отрицательной стороне. Это количественно
описывается законом арксинуса. Далее мы предполагаем, что 𝑝 = 1/2.
Чтобы точно сформулировать результат, нам нужно подходящее определение времени, проведённого на
положительной стороне. Пусть 𝜋2𝑛 — это число отрезков пути (𝑆0, 𝑆1, … , 𝑆2𝑛), которые лежат на или выше
горизонтальной оси. То есть,

𝜋2𝑛 ∶= |{𝑘 ∈ {1, … , 2𝑛} ∶ 𝑆𝑘−1 ≥ 0 and 𝑆𝑘 ≥ 0}|

Заметим, что поскольку 𝑆𝑘 может изменяться только на ±1 на каждом шаге, путь не может пересечь ось
с 𝑆𝑘−1 > 0 до 𝑆𝑘 < 0 (или наоборот) за один шаг, не пройдя через 0. Это означает, что 𝜋2𝑛 должно быть
чётным целым числом.

Мы также определяем
𝐿2𝑛 = max{𝑚 ≤ 2𝑛 ∶ 𝑆𝑚 = 0}

как время последнего посещения начала координат до момента времени 2𝑛.

Теорема 0.1 (Закон арксинуса Леви). Пусть (𝑆𝑛)𝑛≥0 — симметричное одномерное случайное блуждание, а 𝜋2𝑛
— число отрезков на или выше оси, как определено выше. Доля времени 𝜋2𝑛/(2𝑛) сходится по распределению к
распределению арксинуса на [0, 1]:

lim
𝑛→∞

ℙ (𝜋2𝑛
2𝑛 ≤ 𝑥) = 2

𝜋 arcsin(√𝑥)

для любого 𝑥 ∈ [0, 1].
Более того,𝐿2𝑛 имееттоже распределение, что и 𝜋2𝑛, и, таким образом,тотже результат справедлив для𝐿2𝑛

Плотность распределения арксинуса, 𝜚(𝑥) = (𝜋√𝑥(1 − 𝑥))−1, имеет U‐образнуюформу, что подтверждает,
что частица, скорее всего, проводит своё время либо на положительной, либо на отрицательной стороне
оси.

Основная идея доказательства состоит в том, чтобы найти точное выражение для ℙ(𝜋2𝑛 = 2𝑘) при конеч‐
ном 𝑛, а затем использовать приближение Стирлинга для нахождения предела. Для ясности обозначим че‐
рез 𝑁((𝑠, 𝑎) → (𝑡, 𝑏)) число путей, идущих из точки 𝑎 в момент времени (число шагов) 𝑠 в точку 𝑏 в момент
времени 𝑡. Это

𝑁((𝑠, 𝑎) → (𝑡, 𝑏)) = ( 𝑡 − 𝑠
(𝑏 − 𝑎 + 𝑡 − 𝑠)/2)

что означает 0, если (𝑏 − 𝑎 + 𝑡 − 𝑠) нечётно.

Лемма 0.2. Тогда
ℙ(𝐿2𝑛 = 2𝑘) = 𝑢2𝑘𝑢2(𝑛−𝑘) (7)

где 𝑢2𝑚 — это вероятность нахождения в 0 после 2𝑚шагов, 𝑢2𝑚 = (2𝑚
𝑚 )4−𝑚.

Лемма 0.2. Начнём со случая 𝑘 = 𝑛, то есть покажем, что ℙ(𝜏0 > 2𝑛) = 𝑢2𝑛. Путь не возвращается в 0 тогда
и только тогда, когда он остаётся строго на положительной стороне или строго на отрицательной стороне.
В силу симметрии эти две вероятности равны. Вычислим вероятность оставаться строго положительным,
𝑃(𝑆1 > 0, … , 𝑆2𝑛 > 0), то есть 𝑆1 = 1 и последующие 2𝑛 − 1 шагов, начиная с 1, никогда не достигают 0.
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Рисунок 2: Плотность закона арксинуса расходится в 0 и 1, указывая на то, что наиболее вероятные сцена‐
рии — это когда случайное блуждание проводит почти всё своё время по одну сторону от начала
координат.

9



Число таких путей можно найти с помощью принципа отражения (Лемма 0.1). Общее число путей из (1, 1),
которые остаются строго выше 0 в течение 2𝑛 − 1 шагов, даётся результатом следующей телескопической
суммы по всем возможным конечным положениям 2𝑟 > 0:

∞
∑
𝑟=1

[𝑁((1, 1) → (2𝑛, 2𝑟)) − 𝑁((1, −1) → (2𝑛, 2𝑟))]

=
∞

∑
𝑟=1

[𝑁((0, 0) → (2𝑛 − 1, 2𝑟 − 1)) − 𝑁((0, 0) → (2𝑛 − 1, 2𝑟 + 1))] =

𝑁((0, 0) → (2𝑛 − 1, 1)) = (2𝑛 − 1
𝑛 )

Рисунок 3: Число (хороших) путей из начала координат в точку B, которые остаются положительными, мож‐
но получить, вычтя пути, касающиеся начала координат (плохие пути), из всех путей от начала
координат до B. Плохие пути можно вычислить как число путей, начинающихся с ‐1 и достига‐
ющих B.

Для симметричного блуждания все путиимеютодинаковуювероятность. Такмыможемнайти вероятность
невозвращения в начало координат:

ℙ(𝜏0 > 2𝑛) = 2ℙ(𝑆1 = 1, 𝑆2 ≥ 1, … 𝑆2𝑛 ≥ 1) = 2(2𝑛 − 1
𝑛 )2−2𝑛 = 𝑢2𝑛

Теперь рассмотрим общий случай 𝑘 ≤ 𝑛. Событие {𝐿2𝑛 = 2𝑘} означает, что блуждание находится в начале
координат в момент времени 2𝑘 и не возвращается в начало координат между моментами времени 2𝑘 + 1
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и 2𝑛. Мы можем записать это как:

ℙ(𝐿2𝑛 = 2𝑘) = ℙ(𝑆2𝑘 = 0 and 𝑆𝑗 ≠ 0 for 2𝑘 < 𝑗 ≤ 2𝑛)

Но событие {𝑆2𝑘 = 0} не зависит от последующего пути:

ℙ(𝐿2𝑛 = 2𝑘) = ℙ(𝑆2𝑘 = 0) ℙ(𝜏 ′
0 > 2𝑛 − 2𝑘)

где 𝜏 ′
0 — это время первого возвращения для нового блуждания, начинающегося в 0 в момент времени 2𝑘.

Используя результат для 𝑘 = 𝑛, это становится:

ℙ(𝐿2𝑛 = 2𝑘) = 𝑢2𝑘𝑢2(𝑛−𝑘)

Упражнение 0.10. Определим 𝛼2𝑘,2𝑛 = ℙ(𝜋2𝑛 = 2𝑘). Мы хотим доказать, что 𝛼2𝑘,2𝑛 = 𝑢2𝑘𝑢2(𝑛−𝑘). Пусть
𝑓2𝑚 = ℙ(𝜏0 = 2𝑚).
а) Докажите, что 𝛼2𝑘,2 = 𝑢2𝑘𝑢2−2𝑘 для 𝑘 = 0, 1. б) Докажите, что 𝛼2𝑛,2𝑛 = 𝑢2𝑛. в) Проведите индукцию по
𝑛, чтобы проверить, что для 𝑘 = 1, … , 𝑛 − 1

𝛼2𝑘,2𝑛 = 1
2𝑢2𝑛−2𝑘

𝑘
∑
𝑚=1

𝑓2𝑚𝑢2𝑘−2𝑚 + 1
2𝑢2𝑘

𝑛−𝑘
∑
𝑚=1

𝑓2𝑚𝑢2𝑛−2𝑘−2𝑚

г) Обусловливая по времени первого возвращения, проверьте, что 𝑢2𝑘 = ∑𝑘
𝑚=1 𝑓2𝑚𝑢2(𝑘−𝑚). д) Используйте

пункты в) и г), чтобы сделать вывод.

Из Лемма 0.2 и Упражнение 0.10 мы получили:

ℙ(𝜋2𝑛 = 2𝑘) = ℙ(𝐿2𝑛 = 2𝑘) = 𝑢2𝑘𝑢2(𝑛−𝑘) = (2𝑘
𝑘 )(2(𝑛 − 𝑘)

𝑛 − 𝑘 )4−𝑛 (8)

Теперь мы можем доказать теорему.

Теорема 0.1. Нас интересует интегральная функция распределения доли времени 𝜋2𝑛
2𝑛 . Пусть 𝑥 ∈ (0, 1), то‐

гда

ℙ (𝜋2𝑛
2𝑛 ≤ 𝑥) =

⌊𝑛𝑥⌋
∑
𝑗=0

ℙ(𝜋2𝑛 = 2𝑗) = ∫
⌊𝑛𝑥⌋/𝑛

0
𝜚𝑛(𝑦)𝑑𝑦 (9)

где
𝜚𝑛(𝑦) ∶= 𝑛ℙ(𝜋2𝑛 = 2𝑗) for 𝑗/𝑛 ≤ 𝑦 ≤ (𝑗 + 1)/𝑛

По Уравнение 5 и Уравнение 8

𝑛ℙ(𝜋2𝑛 = 2𝑗) = 𝑛𝑢2𝑗𝑢2(𝑛−𝑗) = 1
√𝜋𝑗/𝑛

1
√𝜋(1 − 𝑗/𝑛)

(1 − 𝜀𝑗)(1 − 𝜀𝑛−𝑗)

и мы сразу видим, что 𝜚𝑛(𝑥) → 𝜚(𝑥) = (𝜋√𝑥(1 − 𝑥))−1 равномерно на компактах в (0, 1). Таким образом,
переходя к пределу 𝑛 → ∞ в Уравнение 9, мы получаем утверждение теоремы.

Равенство распределений 𝜋2𝑛 и 𝐿2𝑛 показано в Уравнение 8.
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Многомерное случайное блуждание

Естественным обобщением является случайное блуждание на 𝑙‐мерной целочисленной решётке ℤ𝑙. Блуж‐
дающий начинает в точке x ∈ ℤ𝑙, S0 = x. На каждом шаге он перемещается в одну из 2𝑙 соседних точек с
равной вероятностью 1/(2𝑙). То есть, S𝑛 = x + ∑𝑛

𝑖=1 X𝑖, где X𝑖 — независимые случайные векторы, прини‐
мающие значения ±e𝑗 (где e𝑗 — стандартные базисные векторы) с вероятностью 1/(2𝑙).
Какиводномерномслучае,мыможемспросить, являетсялиблужданиевозвратным(возвращаетсявначало
координат с вероятностью 1) или невозвратным. Ответ, как оказывается, зависит от размерности 𝑙.

Характеристическая функция и вероятности перехода

Для анализа многомерного случая удобно использовать характеристические функции. Пусть ℙx(S𝑛 = y) —
вероятность того, что блуждание, начавшееся в x, окажется в точке y через 𝑛 шагов. Характеристическая
функция случайного вектора S𝑛 (при условии старта из x) определяется как:

𝐹(�, 𝑛, x) = 𝔼x[𝑒𝑖�⋅S𝑛] = ∑
y∈ℤ𝑙

ℙx(S𝑛 = y)𝑒𝑖�⋅y

где � = (𝜃1, … , 𝜃𝑙) ∈ 𝕋𝑙 ≃ (−𝜋, 𝜋]𝑙. Благодаря независимости шагов, мы имеем:

𝐹(�, 𝑛, x) = 𝑒𝑖�⋅x (𝔼[𝑒𝑖�⋅X1])𝑛

Математическое ожидание для одного шага:

𝔼[𝑒𝑖�⋅X1] =
𝑙

∑
𝑗=1

1
2𝑙(𝑒

𝑖𝜃𝑗 + 𝑒−𝑖𝜃𝑗) = 1
𝑙

𝑙
∑
𝑗=1

cos(𝜃𝑗) =∶ Φ(�)

Таким образом, 𝐹(�, 𝑛, x) = 𝑒𝑖�⋅x[Φ(�)]𝑛. Вероятности перехода можно восстановить с помощью обратного
преобразования Фурье:

ℙx(S𝑛 = y) = 1
(2𝜋)𝑙 ∫

(−𝜋,𝜋]𝑙
𝐹(�, 𝑛, x)𝑒−𝑖�⋅y𝑑� = 1

(2𝜋)𝑙 ∫
(−𝜋,𝜋]𝑙

𝑒𝑖�⋅(x−y)[Φ(�)]𝑛𝑑� (10)

Критерий Пойа: возвратность и невозвратность

Мывидели вУпражнение 0.1 (что легко переносится на любуюразмерность), что если блужданиеневозврат‐
но, то число возвращений в 0 является геометрической случайной величиной, следовательно, имеет конеч‐
ное математическое ожидание. Поэтому блуждание возвратно тогда и только тогда, когда математическое
ожидание числа возвращений в начало координат бесконечно. Обозначим это математическое ожидание
как 𝑔(0, 0) = ∑∞

𝑛=0 ℙ0(S𝑛 = 0). Используя Уравнение 10, поскольку |Φ(�)| < 1 за исключением двух точек
(𝜃1 = … = 𝜃𝑙 = 0 и 𝜃1 = … = 𝜃𝑙 = 𝜋):

𝑔(0, 0) =
∞

∑
𝑛=0

1
(2𝜋)𝑙 ∫

(−𝜋,𝜋]𝑙
[Φ(�)]𝑛𝑑� = 1

(2𝜋)𝑙 ∫
(−𝜋,𝜋]𝑙

∞
∑
𝑛=0

[Φ(�)]𝑛𝑑� = 1
(2𝜋)𝑙 ∫

(−𝜋,𝜋]𝑙

1
1 − Φ(�)𝑑�

Блуждание возвратно, если этот интеграл расходится, и невозвратно, если он сходится. Сходимость опреде‐
ляется поведением подынтегральнойфункции вблизи точек, где знаменатель обращается в ноль, т.е. � ≈ 0.
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Вблизи нуля, cos(𝜃𝑗) ≈ 1 − 𝜃2
𝑗 /2, поэтому:

1 − Φ(�) = 1 − 1
𝑙

𝑙
∑
𝑗=1

cos(𝜃𝑗) ≈ 1 − 1
𝑙

𝑙
∑
𝑗=1

(1 − 𝜃2
𝑗 /2) = 1

2𝑙
𝑙

∑
𝑗=1

𝜃2
𝑗 = ‖�‖2

2𝑙

Таким образом, сходимость интеграла зависит от сходимости ∫ 𝑑�
‖�‖2 в окрестности нуля. В полярных коор‐

динатах 𝑑� ∼ 𝑟𝑙−1𝑑𝑟, поэтому интеграл ведёт себя как ∫0
𝑟𝑙−1
𝑟2 𝑑𝑟 = ∫0 𝑟𝑙−3𝑑𝑟.

• При 𝑙 = 1, интеграл ∫ 𝑟−2𝑑𝑟 расходится. Блуждание возвратно.
• При 𝑙 = 2, интеграл ∫ 𝑟−1𝑑𝑟 расходится. Блуждание возвратно.
• При 𝑙 ≥ 3, показатель степени 𝑙 − 3 ≥ 0 > −1, поэтому интеграл сходится. Блуждание невозвратно.

ЭтотрезультатизвестенкактеоремаПойа: симметричное случайноеблужданиенаℤ𝑙 возвратнодля 𝑙 = 1, 2
и невозвратно для 𝑙 ≥ 3. Это частный случай результата, изложенного в Remark 0.1.

Моделирование блуждания

Мыможемлегкопроверитьразличныеутверждениячисленно, поскольку сходимостьпроисходитдовольно
быстро.

Первый возврат к 0
Сначала мы явно вычислили закон первого возвращения в 0. Его математическое ожидание бесконечно,
поэтому при моделировании нужно быть осторожным и обрезать симуляции на определённом количестве
шагов. Это вносит смещение, о котором мы сообщаем, но не компенсируем его здесь.

Распределение арксинуса

Затем мы моделируем методом Монте‐Карло количество времени, которое случайное блуждание остаётся
положительным.

Грубо говоря, эти распределения универсальны, то есть они представляют собой скейлинговый предел для
нескольких различных случайных динамик. Например, мы можем изменить закон 𝑋𝑖 на любое центриро‐
ванное распределение с конечной дисперсией (скажем, 1), чтобы сойтись к тому же закону.

На этом графике используется непрерывное равномерное распределение.

Выможете попробовать проверить универсальность распределения арксинуса. Выможете посмотреть, что
происходит с различными распределениями. Если распределения несимметричны (например, центриро‐
ванное показательное 𝑋 − 𝔼[𝑋] с показательным 𝑋), чего вы ожидаете?

Повторяемость и кратковременность в многомерном пространстве

Еслимы запустимтрёхмерное случайное блуждание, скажем,𝑋, и возьмёмегопроекцию𝑌 на горизонталь‐
ную плоскость, спроецированное блуждание не будет двигаться при вертикальном движении 𝑋. Но если
мы пропустим этот момент (что не изменит свойства возврата к 0 или нет), 𝑌 просто совершит двумерное
случайное блуждание. Очевидно, что 𝑌 будет пересекать свой собственный путь (возвращаться туда, где
был) гораздо чаще, чем 𝑋. Действительно, каждый раз, когда 𝑋 возвращается к 0, 𝑌 также будет делать это,
в то время как обратное неверно (когда 𝑌 находится в начале координат, 𝑋 может находиться в некоторой
точке (0, 0, 𝑧)). Это ещё более верно, если мы проецируем только на одну ось координат. Другими словами,
очевидно, что чем выше размерность, тем более кратковременным является блуждание (для симметричных
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Рисунок 4: Эмпирическое и теоретическое распределение времени первого возвращения в 0.

14



Рисунок 5: Количество времени, которое случайное блуждание остаётся положительным, сходится к рас‐
пределению арксинуса.
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Рисунок 6: Количество времени, которое случайное блуждание с непрерывными равномерными прираще‐
ниями остаётся положительным.
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случайных блужданий). Этот неформальный аргумент легко превратить в строгое доказательство. В этом
видео показано описанное явление.
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